HOME  >   News & Information  >   Recruitment  >   Recruitment for Postdoctoral Fellow(Fixed-term researcher)

Recruitment

Recruitment for Postdoctoral Fellow
(Fixed-term researcher)

  1. Physics Chemistry Mathematics Geo and Environemtal Sciences Biology Radiation
    Mechanics Material Electricity and Electronics Architectural and Civil Engineering Applied Physics Applied Chemistry
    Chemical Engineering Measurements and Instruments Computer and Information Robotics Other All
  2. No Theme
    Department Section Location Contact Person Radiation Worker/
    Non-Radiation Worker
    Field
    (for reference)
    Summary
    J10Study on a Level 3 Probabilistic Risk Analysis of nuclear power plants
    Nuclear Safety Research CenterRadiation Risk Analysis Research GroupTokai Research and Development Center
    Nuclear Science Research Institute
    Masanori Kimura
    Tel:+81-29-282-5459
    E-mail: kimura.masanori@jaea.go.jp
    Non-Radiation WorkerPhysics
    Chemistry
    Mathematics
    Geo and Environemtal Sciences
    Radiation
    Architectural and Civil Engineering
    Computer and Information
    A level 3 probabilistic risk assessment (PRA) is an offsite consequence analysis for a severe accident and estimates the frequency and severity of the consequences to the public. Probabilistic accident consequence assessment models and computer codes are an integral part of level 3 PRA of nuclear power plants. Our research group has developed a level 3 PRA code, OSCAAR. In this theme, researches on the probabilistic accident consequence assessment for health effects and economic consequence are conducted considering site-dependent on metrological, population, agricultural and economic data by using OSCAAR.
    J16Physics and chemistry studies for superheavy elements by using slow superheavy-element beams
    Sector of Nuclear Science Research Advanced Science Research CenterResearch Group for Heavy Element Nuclear Science
    Tokai Research and Development Center
    Nuclear Science Research Institute
    Masato Asai
    Tel:+81-29-282-5490
    E-mail: asai.masato@jaea.go.jp
    Radiation WorkerPhysics
    Chemistry
    Radiation
    Measurements and Instruments
    Nuclear physics, nuclear chemistry, and atomic and molecular physics of superheavy elements are studied through developments of new methods utilizing slow superheavy-element beams. The research subjects are as follows: developments of superheavy-element-beam production and ion-guide techniques; ionization-energy measurements; nuclear-structure and fission studies using an on-line isotope separator; nuclear mass measurements; surface adsorption and molecular formation studies for superheavy elements. These developments and experiments are mainly performed at the JAEA Tandem Accelerator Facility.
    J25Evaluation of correlation between changes in microstructure and mechanical properties in irradiated materials (metal, steel, and ceramics)
    Nuclear Science and Engineering CenterResearch Group for Radiation Materials Engineering, Fuels and Amterials Engineerign DivisionTokai Research and Development Center
    Nuclear Science Research Institute
    Shinichiro Yamashita
    Tel:+81-29-282-5391
    E-mail: yamashita.shinichiro@jaea.go.jp
    Radiation WorkerRadiation
    Material
    Physics
    Mechanics
    In order to increase safety and integrity in existing and future nuclear power plants, micrstructural observation and a wide variety of mechanical strength tests (tensile, hardness measurement, and toughness etc) of nuclear reactor component materials such as structural material and simulated fuel-like oxide irradiated at various environmental conditions will be performed. Based on the experimental data acquired, a correlation between changes in microstructure and mechanical properties in the materials will be evaluated. In addition to that, it is possible to conduct fundamental study on radiation damage for the materials. Through these works, it is expected that synergistic function among environmental factors (irradiation, thermal load, stress, atmosphere etc) influencing on correlation evaluation for those materials will be clarified, contributing increment of safety and integrity in the existing/future nuclear power plants.
    J27Research and development of non-destructive analysis for nuclear materials.
    Nuclear Science and Engineering CenterResearch Group for Nuclear Sensing, Nuclear Data and Reactor Engineering DivisionTokai Research and Development Center
    Nuclear Science Research Institute
    Yosuke Toh
    Tel:+81-29-282-6211
    E-mail: toh.yosuke@jaea.go.jp
    Radiation WorkerMeasurements and Instruments
    Physics
    Radiation
    Applied Physics
    Non-destructive analysis of nuclear materials is required in many fields, namely nuclear non-proliferation and nuclear security, nuclear decommissioning, nuclear transmutation and nuclear industry. In this research, non-destructive techniques of nuclear materials and long-lived radioisotopes, which are difficult to quantify by conventional methods, are developed by combining several method, such as neutron and gamma-ray detection and imaging techniques.
    J30Study of Performance Improvement for the J-PARC Accelerators
    Sector of Nuclear Science Research,
    J-PARC Center
    Accelerator Division
    J-PARCMichikazu Kinsho
    Tel:81-29-284-3172
    E-mail: kinsho.michikazu@jaea.go.jp
    Radiation WorkerPhysics
    Applied Physics
    Radiation
    Electricity and Electronics
    Measurements and Instruments
    The goal of the J-PARC proton accelerators is to achieve stable beam operation at 1 MW. Beam loss reduction is crucial to increase beam power and to achieve stable operation. And also, long-lasting components are important for reliable operation. The subject of this theme is to study beam loss reduction for the J-PARC linac and/or 3 GeV Synchrotron (RCS). He/she will perform a study of beam diagnostics, beam loss handling and component development for stabler operation.
    J32Development of Neutron Detectors at Materials and Life Science Facility of J-PARC
    Sector of Nuclear Science Research,
    J-PARC Center
    Materials and Life Science Division
    Neutron Instrumentation Section
    J-PARCKaoru Sakasai
    Tel:+81-29-284-3519
    E-mail: sakasai.kaoru@jaea.go.jp
    Radiation WorkerRadiation
    Measurements and Instruments
    Electricity and Electronics
    The work of neutron instrumentation section focuses on development of various neutron detectors and neutron optical devices for Materials and Life Science Facility (MLF) of J-PARC. Construction of a new neutron diffractometer for analysis of large protein-crystals is now under planning at the MLF. The neutron detectors for the diffractometer are required to have high performances such as large sensitive area and high spatial resolution. The successful applicant will participate in the development of such detectors using scintillators.
    F3Research on severe accident progression behavior of the Fukushima Daiichi NPP accident
    Collaborative Laboratories for Advanced Decommissioning Science (CLADS),
    Sector of Fukushima Research and Development
    Molten Core Behavior Analysis Group
    Severe Accident Propagation Behavior Evaluation Division
    Tokai Research and Development Center
    (Nuclear Science Research Institute)
    Toshio Nakagiri
    Tel:+81-(0)29-267-1919, Ex.5802
    E-mail: nakagiri.toshio@jaea.go.jp
    Non-Radiation WorkerPhysics
    Chemistry
    Radiation
    Mechanics
    Material
    Measurements and Instruments
    Computer and Information
    Analytical evaluation using SA codes (SCDAP, MELCOR, etc.) and 1F plant data are peroformed to enhance understanding on accident progression behavior in the Fukushima Daiichi NPP.
    In this theme, evaluation of 1F plant data with SA code analysis will be conducted and possibility of model improvement will be considered where appropriate.
    F6R&Ds on Radiation Imaging Technologies under High-dose Environments
    Collaborative Laboratories for Advanced Decommissioning Science (CLADS),
    Sector of Fukushima Research and Development
    Radiation Imaging and Instrument Group
    Remote System and Sensing Technology Division
    Tokai Research and Development Center (Nuclear Science Research Institute) or Tomioka International Collaborative Research Building (now under constructing)Jun Saegusa
    Tel:+81-(0)29-282-6144
    E-mail: saegusa.jun@jaea.go.jp
    Radiation WorkerPhysics
    Radiation
    Computer and Information
    Electricity and Electronics
    Applied Physics
    Measurements and Instruments
    For the decommissioning of TEPCO Fukushima Daiichi Nuclear Power Plants, gamma-ray detectors that can estimate the position, shape and nuclide distributions of residual debris are to be developed. In particular, a prototype detection system consisting of two-dimensional-gamma-imaging units and compact scintillator crystals is developed for the application to fuel debris measurements, and response characteristics of each element to gamma-rays are evaluated. In addition, a compact/lightweight gamma-camera is to be manufactured for the evaluation of its detection capability to radioactive materials and of durability against radiations. An unmanned remote radiation measurement system for the imaging of the radioactivity distribution in the Fukushima reactor building are also to be developed.
    F7R&Ds on Image Processing Technologies for Radiation Measurement Data on Reactor Decommissioning
    Collaborative Laboratories for Advanced Decommissioning Science (CLADS),
    Sector of Fukushima Research and Development
    Radiation Imaging and Instrument Group
    Remote System and Sensing Technology Division
    Tokai Research and Development Center (Nuclear Science Research Institute) or Tomioka International Collaborative Research Building (now under constructing)Jun Saegusa
    Tel:+81-(0)29-282-6144
    E-mail: saegusa.jun@jaea.go.jp
    Non-Radiation WorkerComputer and Information
    Radiation
    Physics
    Mathematics
    Applied Physics
    Measurements and Instruments
    Towards the planned removal of fuel debris from the TEPCO Fukushima Daiichi Nuclear Power Plants in 2021, reduction of radiation doses to workers and countermeasures against the spreading of radioactive contaminations are essential. For the purpose, three-dimensional visualization (mapping) of dose rates and radionuclide distributions are required as well as the real time monitoring of dose rates in the reactor building. So far, developments on radiation measurement techniques in the Fukushima Daiichi NPPs are in progress, and results obtained from these developments are to be visualized by the proposed R&Ds. Especially, developments of the algorithm for the three-dimensional image reconstruction is to be performed.
    F8Research on alteration and leaching of molten fuel
    Collaborative Laboratories for Advanced Decommissioning Science (CLADS),
    Sector of Fukushima Research and Development
    Fuel Debris Characterization and Conditioning Technology Development Group
    Fuel Debris Handling and Analysis Division
    Tokai Research and Development Center
    (Nuclear Fuel Cycle Engineering Laboratories)
    Hideki Ogino
    Tel:+81-29-282-1126
    E-mail: ogino.hideki@jaea.go.jp
    Non-Radiation WorkerPhysics
    Material
    Chemical Engineering
    Chemistry
    Geo and Environemtal Sciences
    Radiation
    Computer and Information
    The work on fuel debris removal from the damaged reactors at Fukushima Daiichi NPP requires a considerably long time. Considering long-term removal work and the subsequent processes such as storage, treatment and disposal, alteration of fuel debris should be evaluated . Although it is anticipated that alteration of fuel debris can be developed by external environments such as air, water and radiation (e.g., the conversion of debris surfaces into powder form and elution into the water), there is little knowledge about alteration.
    In this research, the alteration and leaching behavior of fuel debris will be evaluated and their models will also be developed based on the knowledge about the alteration of Chernobyl LFCM and the disposal technologies of spent fuel and vitrified waste, etc.
    F11Development of analytical method for small amount radionuclides in environment
    Sector of Fukushima Research and Development
    Fukushima Environmental Safety Center
    Fukushima Safety Administration and Radiation Measurement GroupFukushima(Miharu)Yasuhiro UEZU
    Tel:+81-247-61-2911
    E-mail: uezu.yasuhiro@jaea.go.jp
    Non-Radiation WorkerChemistry
    Geo and Environemtal Sciences
    Radiation
    The transfer factor of Sr-90 and H-3(OBT) are not same of Cs-137 in environment .
    Therefore, our group would like to develop simple and rapid analytical methods for Sr-90 and OBT in environmental samples.
    The study points of Sr-90 analytical method by using Q-ICP-MS are reduction of isobar interference and increasing of sensitivity. The study points of OBT are aqueous yield from samples.
    http://fukushima.jaea.go.jp/initiatives/cat01/pdf1511/2-2_takeishi.pdf
    F12High-energy gamma-rays accompanied by fission
    Sector of Nuclear Science Research Advanced Science Research CenterResearch Group for Heavy Element Nuclear Science
    Tokai Research and Development Center
    Nuclear Science Rsearch Institute
    Dr. Katsuhisa Nishio
    Tel:+81-29-282-5454
    E-mail: nishio.katsuhisa@jaea.go.jp
    Radiation WorkerPhysics
    Radiation
    Measurements and Instruments
    Applied Physics
    Computer and Information
    Measurement of high-energy gamma-rays accompanied by fission will be carried out, and the mechanism of this radiation will be investigated. The main goal is to use this radiactivity to monitor the criticality of nuclear fuel debris of damaged Fukushima atomic power plants, which is necessary in the process of decommissioning. An experiment will be carried out using neutron beam supplied by a research reactor. Fission study is also the scope of this program using heavy-ion beams and and photons.