【背景】

健康で安心な暮らしを支える医療診断技術や地球環境を守る低環境負荷技術はますますその必要性を増しています。これらの技術開発には放射光施設と呼ばれる大型の高輝度X線発生装置を中心とした分析・観察装置群が必要不可欠ですが、一方で、より身近で実用的な小型の高輝度X線発生装置が求められています。このようなニーズに応えるために、本研究では大型の高輝度X線発生装置とは全く異なる逆コンプトン散乱※5原理を用いた技術、すなわち電子ビームとパルスレーザービームを衝突させて高輝度X線を発生させる技術を開発してきました。この技術開発において、高輝度X線を得るためには大強度・超低エミッタンス電子ビームを50 MeV程度まで加速することが必要でした。

【研究内容と成果】

今回、大強度超低エミッタンス電子ビームを発生させる光高周波電子銃と、その加速に必須の超伝導加速空洞を試作し、大強度電子ビームの加速に成功しました。2台の9セル超伝導加速空洞を、加速モジュールと呼ばれる2Kの極低温に冷却可能な横置きの液体ヘリウムクライオスタット(冷凍用断熱真空容器)中に配置し、各加速空洞において40 MV/m及び33 MV/mの高電界印加を確認しました。その後、実際に光高周波電子銃から電子ビームを入射して加速を行い、電子エネルギー40 MeV、1パルス中に12000バンチ(目標は165000バンチ)、1バンチ中の電荷は41 pC、パルス繰返しは5 Hzを達成しました。この性能は,これまでのパルス当りの最大値2400バンチを超え、世界最大数となるものです。これにより、加速された電子ビーム強度は従来と比較して100倍程度大きくすることが可能となりました。これは、高電界超伝導加速空洞に基づく電子線形加速器として、実験室規模で安定運転を行った日本初の事例です。

【本研究成果の意義、今後の展望】

今後、電子ビームの一層の大電流化と安定化を図り、別途開発中の大強度パルスレーザービームとの衝突による高輝度X線ビーム(発光点寸法は約10マイクロメートル)の生成を実現します。これにより、がんや微小動脈硬化の初期判断などの高度医療診断の普及に貢献するほか、環境触媒や電池材料のナノ構造解析等への利用を画期的に飛躍させることが期待されます。


戻る