

www.cea.fr

International Symposium on Present Status and Future Perspective for Reducing of Radioactive Wastes

Concept and Future Perspective on **ASTRID** project in France

Sylvestre PIVET

CEA, Nuclear Energy Division Direction of Innovation and Nuclear Support Division

17 FEBRUARY 2016

The French frame of long-term Radioactive Waste Management

The 2006 Act

Principles : Recycling to decrease waste amount & harmfulness

> sed REU (UOX 1000t) 150t LWRs REU 150t used UOX 1000 t Fuel fabrication RECYCLING depleted Plutonium #10t uranium '000t Uranium NASTE enrichment FPs and MAs epleted RU 8000 40 Uranium Conversion Uranium (RU) #950 t THE PRINCIPLE OF THE FRENCH Mining and milling CLOSED FUEL CYCLE natural U 8000 (rough amounts/year, 400 Twe/y)

 Geological repository : the reference option for ultimate waste management. JAEA International Symposium | 17 February 2016 | PAGE 2

Fast reactors at the heart of the CEA research

- For the longer term: comprehensive closed fuel cycle
- Excellent use of uranium resources
- Contribution to the management of long-lived radioactive waste

Sodium-cooled fast reactors

Astrid program

Gas-cooled fast reactors

For the longer term

The Astrid project: perimeter

ASTRID design studies

Full scale component testing

Large test sodium loops Refurbishment of zero

power reactor MASURCA

R&D

Core fabrication workshop

- MOX fuel
- A few tons per year

Severe accidents experimental program

JAEA International Symposium | 17 February 2016 | PAGE 4

Technological demonstration reactor (a step before a First Of A Kind)

- Integrating French and international SFRs feedback
- A GEN IV system
 - Safety
 - Durability
 - Operability
 - Non proliferation warranty
- Irradiation services and options test

CEA/Nuclear Energy Division is in charge of the ASTRID project

Bilateral industrial partnerships cover main design engineering batches

Astrid main technical choices

- 1500 thMW ~600 eMW
- Oxide fuel UO2-PuO2.
 New reactor core design
- Core catcher integrated into the reactor vessel to catch molten core debris
- Inerting and early leak detection systems which greatly reduce the risk of sodium fires
- Integration of in-service inspection requirements into the reactor design
- Multiple, redundant decay heat removal systems.
- Experimental capabilities: to contribute to the qualification of transmutation, fertile or burner subassemblies

A one geographical level platformAn optimization work on the balance of plant

Reactor building

JAEA International Symposium | 17 February 2016 | PAGE 10

Confirmation of a low sodium void core (CFV)

Low Sodium Void Worth Core

protected transients

Phenix experiments post-irradiation examinations

ASTRID mock-up in Masurca **ZPR**

Reactivity control system and its complementary safety devices

- All the rods are used for reactor operation: control rods and diversified rods.
- Addition of complementary diversified safety devices : hydraulics ones and Curie point thermal ones.

In service inspection and repair

Diversified decay heat removal systems

RRC

- Oil coolant
- Water heat sink

JAEA International Symposium | 17 February 2016 | PAGE 14

In-core complementary safety devices for severe accidents mitigation

- CFV core equipped with 21 devices for corium dispersion
 - Objectives:

Foreseen Plinius2 facility - CEA Cadarache

Furnace Hall

- Reduce re-criticality risk
- Avoid melting propagation to the internal storage
- Minimize impact on core performances

JAEA International Symposium | 17 February 2016 | PAGE 15

Secondary loops main options (steam water PCS option)

GAS power conversion system: an option under study

- Brayton gas cycle : 180 bar of Nitrogen at 515°C
- 37% efficiency
- Operation and safety analysis have been performed
- No show-stopper identified at that point

Constructability studies

Transmutation of minor actinides

- Americium has been identified as a first target for a possible separation and transmutation strategy with the goal of reducing the long term harmfulness of ultimate waste.
- A substantial impact on the on the high-level waste disposal surface area required

Planning of astrid project (under discussion)

Cost, safety and operability are the drivers

Thank you for your attention

