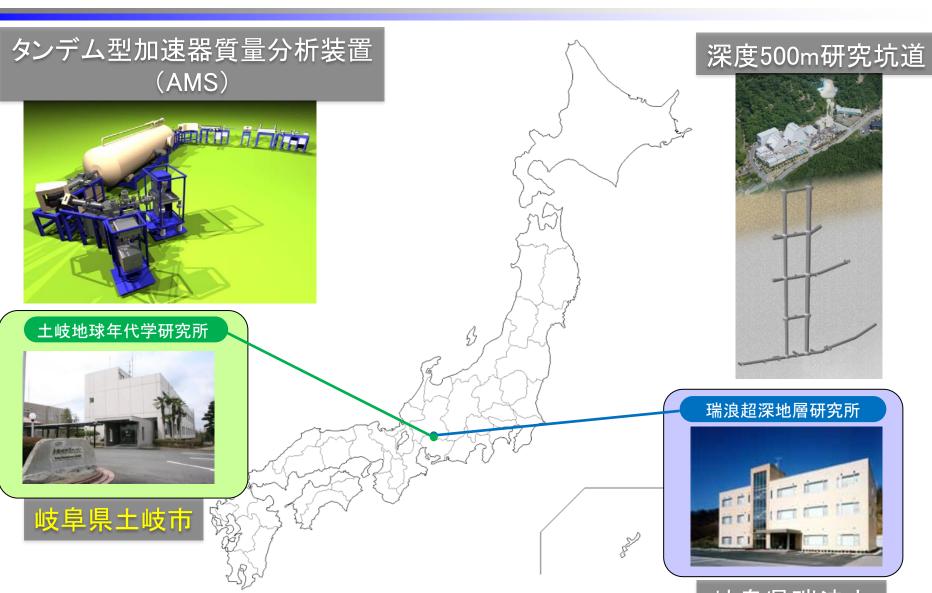


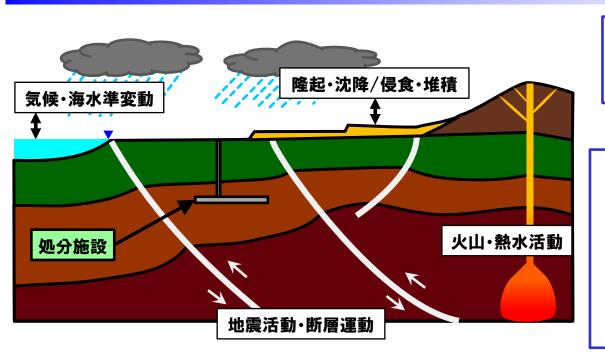
年代測定手法の高度化への挑戦

一加速器質量分析装置における新検出手法の開発一


平成29年11月14日

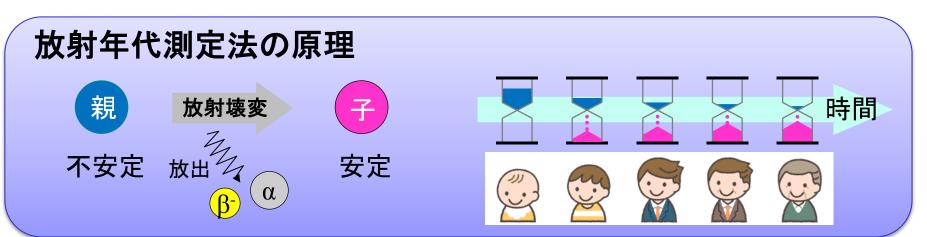
国立研究開発法人日本原子力研究開発機構 バックエンド研究開発部門 東濃地科学センター 地層科学研究部 年代測定技術開発グループ

藤田 奈津子



東濃地科学センターの概要

地層処分において考慮すべき自然現象



過去の断層運動・火成活動の時期 また隆起・侵食などの傾向・速度を 精度良く把握することが必要

年代測定技術の開発

- 技術の高度化・標準化は極めて 重要かつ基盤的な要素技術
- 最先端の機器分析装置の導入を 行い、各種の放射年代測定手法 の整備中

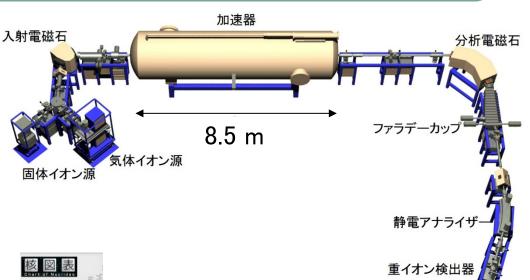
年代測定技術の開発

目的や対象物質に応じた各種年代測定法を開発整備

技術開発の対象年代範囲

											3×13101350-77	3家牛15吨四	_
対象施設	年代測定法	年代測定範囲(年)								• •		実用化への	$\left[\right]$
		1	0 ⁹ 1	0 ⁸ 1	0 ⁷ 1	0 ⁶ 1	05	104 1	10 ³	主な反映先	対象物質	スケジュール	
タンデム型加速器 質量分析装置 (AMS)	¹⁴ C法						-			断層運動	地下水, 有機物	実用化済	
	¹⁰ Be法									隆起速度	石英	実用化済	
	²⁶ Al法									隆起速度	石英	実用化済	
	³⁶ CI法									地下水年代	地下水	開発中	
	¹²⁹ l法									地下水年代	地下水	開発中	
希ガス質量分析装置	K-Ar法	• •								断層運動	自生雲母粘土鉱物	実用化済	
四重極型質量分析装置	(U-Th)/He法						• •			隆起速度	アパタイト, ジルコン	実用化済	
光ルミネッセンス測定装置	OSL法									断層運動	石英, 長石	実用化済	
電子スピン共鳴装置	ESR法				• • •			• • •		後背地解析	石英, 炭酸塩鉱物	開発中	
高精度希ガス質量分析装置	希ガス法									地下水年代	地下水	開発中	
電子プローブマイクロアナライザ	CHIME法									後背地解析	モナザイト, ジルコン	実用化済	
レーザーアブレーション 誘導結合プラズマ 質量分析装置	U−Pb法									後背地解析	ジルコン	実用化済	
										断層運動	炭酸塩鉱物	開発中	
	²³⁰ Th- ²³⁴ U法									断層運動	炭酸塩鉱物	開発中	
	FT法		••				• •			隆起速度	シ'ルコン, アパタイト	開発中	

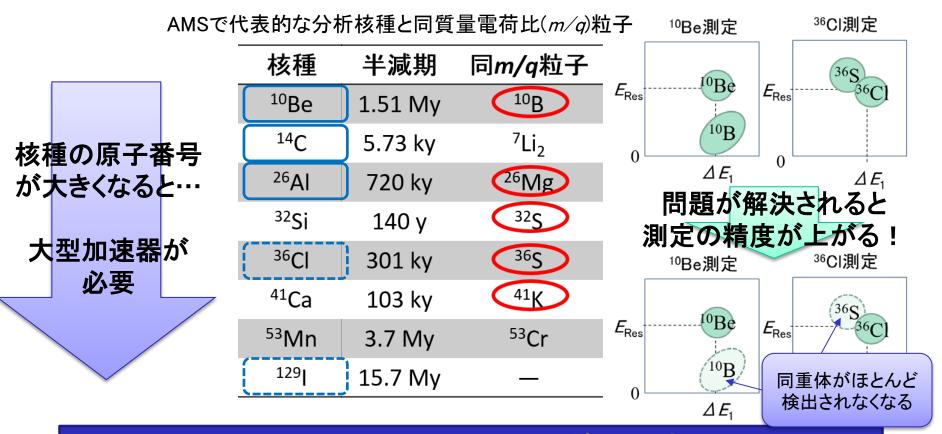
高速増殖原型炉もんじゅの敷地内の破砕帯の年代測定等に活用


加速器質量分析(AMS)の利用

加速器質量分析 (Accelerator Mass Spectrometry, AMS):

ごく微量の放射性同位体を超高感度で検出し定量する方法

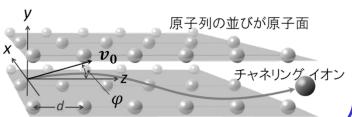
- National Electrostatics Corp.製 15SDH-2(5 MV)
- AMS専用機 (¹⁴C, ¹⁰Be, ²⁶Al, …)



加速器質量分析(AMS)について

同じ質量電荷比の同重体は、存在比で測定核種に比べ3~9桁高い このため、AMSでは同重体分別が必須

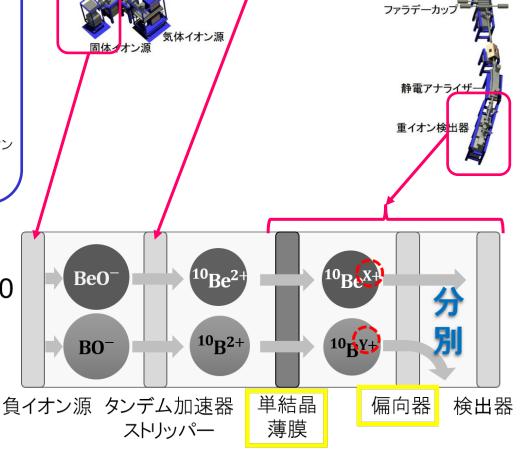
小型(5 MV以下)のAMSで使用できる 新しい同重体分別技術が必須



発案したRCEによる同重体分別法

入射電磁石

コヒーレント共鳴励起


(Resonance Coherent Excitation: RCE) 運動するイオンが静的周期場を感受し イオンの内部励起が発生する現象

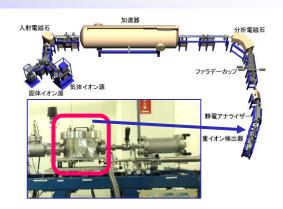
特許 第6086587 (原子力機構)

目的核種 ベリリウム-10

妨害核種 ホウ素-10

加速器

RCEを発生


電荷の違いで分別

分析電磁石

成果:技術基盤の整備

- ✓ チェンバーの製作
 - 実験領域(薄膜、偏向器)を設置

- ✓ 単結晶薄膜の膜厚検討
 - 膜厚が厚くなるとランダム過程によってRCEが不鮮明
 - 膜厚が薄いと5 MVでもRCEを発生可能
 - 30 nm(世界最薄)の薄膜使用予定 (H29年12月以降)

- ✓ 既存の厚い(200 nm) 単結晶薄膜を使用した 技術基盤の整備
 - ▶ チャネリング技術の構築
 - ➤ 荷電分布取得技術の構築

まとめ

- ●RCEによるAMSの同重体分別を考案
 - ▶特許第6086857
 「加速器質量分析による妨害核種分別方法およびその装置」
- ●実証のための技術基盤を整備
 - ➤30 nm薄膜を用いた実証試験(H29年12月以降)
- ●新たな特許出願
 - ▶国内特許:特願2017-55416
 「イオンビーム透過膜の透過率改善方法及びその装置」
 - ▶外国出願に向けて準備中
- 測定の高精度化、装置の小型化(世界最小AMS)の 実現に向けて実証試験中

本研究の構成・謝辞

- ◆ 本研究は下記の制度を利用して行いました。
 - 奈良女子大学との共同研究
 - 機構内の平成27年~28年萌芽研究開発制度 (寄附金利用)
- ◆ メンバー 原子力機構 藤田奈津子、國分(齋藤)陽子 株式会社ペスコ 松原章浩 奈良女子大学 石井邦和、小川英巳

◆ RCEの学術的研究を先導されておられる 理化学研究所 東俊行主任研究員 立教大学 中野祐司准教授 には有益なご助言をいただきましたことを感謝いたします。