
Hitachi’s activity for transmutation system of long-lived radioactive waste

Tetsushi Hino
Hitachi, Ltd., Hitachi Research Laboratory
Contents

1. Introduction
2. Sodium-cooled MA burner
3. Boiling water reactor as TRU burner
4. Flexible fuel cycle
5. Summary
2. Hitachi’s activity outline

Cooperate on SFR/Fuel cycle national projects
Investigate an option based on BWR experiences

- Sodium-cooled MA burner
 Advancing SFR performance
 Conducted as MEXT project

- BWR TRU burner
 Advancing BWR features
 Study on option for SFR

Flexible fuel cycle
Adaptive to various fuel cycles, debris management
Conducted as MEXT project

SFR: Sodium-cooled Fast Reactor
BWR: Boiling Water Reactor
MA: Minor Actinide
TRU: Transuranium element
MEXT: Ministry of Education, Culture, Sports, Science & Technology
3. MEXT Project for MA burner

Pursuing harmonization of efficient MA transmutation with enhanced safety characteristics

“Study on minor actinide transmutation using MONJU data”*

* This material includes 2013 results of the study entrusted to University of Fukui by MEXT.

- **University of Fukui**
 - Management

- **Univ. Fukui/Kyoto/Osaka**
 - Advanced analysis method

- **JAEA**
 - Related experimental data analysis, DB construction

- **JAEA/Hitachi-GE**
 - Advanced core design

- **Hitachi-GE**
 - Transient, Accident analysis
4. Advanced homogeneous MA core

Reduce absolute value of void reactivity by placing Na plenum* on the top of core

5. Core specification and performance

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output (electric/thermal)</td>
<td>MWe/MWt</td>
<td>750/1,765</td>
</tr>
<tr>
<td>Operation cycle</td>
<td>month</td>
<td>18.6</td>
</tr>
<tr>
<td>Number of batch (core/radial blanket)</td>
<td>-</td>
<td>6/6</td>
</tr>
<tr>
<td>Core height (inner/outer)</td>
<td>cm</td>
<td>60/90</td>
</tr>
<tr>
<td>Internal blanket height</td>
<td>cm</td>
<td>20</td>
</tr>
<tr>
<td>Na plenum height (inner/outer)</td>
<td>cm</td>
<td>40/30</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu enrichment, MA content (inner/outer)*</td>
<td>wt%</td>
<td>27.4/24.8, 6.8/6.1</td>
</tr>
<tr>
<td>Burnup reactivity</td>
<td>%Δk/kk’</td>
<td>0.63</td>
</tr>
<tr>
<td>Breeding ratio</td>
<td>-</td>
<td>1.14</td>
</tr>
<tr>
<td>Maximum liner heat generation rate</td>
<td>W/cm</td>
<td>396</td>
</tr>
<tr>
<td>Discharged exposure (core/all)</td>
<td>GWd/t</td>
<td>149.3/78.9</td>
</tr>
<tr>
<td>MA transmutation amount</td>
<td>kg/GWe/y</td>
<td>103</td>
</tr>
<tr>
<td>MA transmutation rate</td>
<td>%/discharge</td>
<td>36</td>
</tr>
<tr>
<td>Void reactivity (EOEC)</td>
<td>$</td>
<td>3.6</td>
</tr>
<tr>
<td>Doppler coefficient (EOEC)</td>
<td>Tdk/dT</td>
<td>-5.0×10⁻³</td>
</tr>
</tbody>
</table>

EOEC: End of equilibrium cycle

* Suppose TRU isotopes from LWR’s spent fuel

© Hitachi, Ltd. 2014. All rights reserved.
6. Safety analysis with effective void

Negative void reactivity under transient might slow event progress

Na density and reactivity coeff. axial distribution

⇒ Study to enhance MA transmutation and safety is in progress
7. Hitachi’s activity outline

Cooperate on SFR/Fuel cycle national projects
Investigate an option based on BWR experiences

- Sodium-cooled MA burner
 Advancing SFR performance
 Conducted as MEXT project

- BWR TRU burner
 Advancing BWR features
 Study on option for SFR

- Flexible fuel cycle
 Adaptive to various fuel cycles,
 debris management
 Conducted as MEXT project
8. BWR feature for TRU burner

Advance BWR’s moderation controlling capability to burn not only fissile but also fertile

- Enhance moderation ▼
 - Burn fissile
- Suppress moderation ▼
 - Burn fertile
 - Breed Puf

Coolant to fuel ratio
- Large
- Small

Volume ratio (coolant/fuel)
- Conventional BWR
- Conventional PWR
- TRU burner

Effective volume ratio
- (coolant/fuel)

Coolant void fraction is considered
9. RBWR concept

Reduced moderation core is optimized for TRU burning. Safety system, BOP, etc. are almost same as conventional BWR.

Plant cut-away view

RBWR: Resource-renewable BWR

Conventional BWR fuel

RBWR fuel

© Hitachi, Ltd. 2014. All rights reserved.
10. Core configuration

Y-type Control rods are inserted between fuel bundles

Pressure vessel

The number of
- fuel bundles: 720
- control rods: 223

Y-type control rod

Follower zone

Absorber zone

© Hitachi, Ltd. 2014. All rights reserved.
11. TRU burner types

Burn TRU from PWR/BWR
- Burn TRU
- Keep TRU composition during cycles
- Discharge Reprocess

Burn-out almost all TRU
- Burn-out leaving a core

- PWR/BWR
- RBWR
- TRU

- Parallel use
- Time

- Depleted uranium
- Other RBWR
- Feed TRU
- Keep TRU composition before/after burn

© Hitachi, Ltd. 2014. All rights reserved.
12. Selection of moderator to fuel ratio

Proper fissile breeding ratio to achieve TRU multi-recycling is obtained by adjusting coolant(moderator)/fuel.
13. Fuel concept for inherent safety

Void reactivity coefficient is kept negative by two fissile zone core with top/bottom neutron absorber zones

- TRU zone
- Depleted uranium
- Fuel assembly
- Control rod (Follower zone)
- Control rod (absorber zone)
- Channel box (not shown)
- Plenum zone: accumulates FP gas
- Upper neutron absorber zone: dumps excess neutron@transient
- Upper blanket zone
- Internal blanket zone
- Lower neutron absorber zone
Fission not only fissile TRUs but also fertile TRUs at the rate more than twice the rate of TRU production by BWR.
15. Core specification and performance

<table>
<thead>
<tr>
<th>Item</th>
<th>RBWR TRU burner</th>
<th>ABWR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For RBWR-TRU</td>
<td>For PWR/BWR-TRU</td>
</tr>
<tr>
<td>Electrical power (MWe)</td>
<td>1356</td>
<td>1356</td>
</tr>
<tr>
<td>Core height (mm)</td>
<td>993</td>
<td>1025</td>
</tr>
<tr>
<td>No. of fuel bundles</td>
<td>720</td>
<td>720</td>
</tr>
<tr>
<td>No. of fuel rods</td>
<td>397</td>
<td>397</td>
</tr>
<tr>
<td>Fuel rods diameter (mm)</td>
<td>7.4</td>
<td>7.2</td>
</tr>
<tr>
<td>Fuel rod gap (mm)</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Coolant flow rate (kt/h)</td>
<td>38</td>
<td>24</td>
</tr>
<tr>
<td>Core exit quality (%)</td>
<td>21</td>
<td>36</td>
</tr>
<tr>
<td>Void fraction (%)</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>Pressure drop (MPa)*</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>HM Inventory (t)</td>
<td>77</td>
<td>76</td>
</tr>
<tr>
<td>Puf/HM in TRU zone (w/o)</td>
<td>13.9</td>
<td>25</td>
</tr>
<tr>
<td>Burnup (GWd/t)</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>MLHGR (kW/ft)</td>
<td>14.4</td>
<td>14.4</td>
</tr>
<tr>
<td>MCPR</td>
<td>1.3</td>
<td>1.28</td>
</tr>
<tr>
<td>Void coef. ($\Delta k/k/%\text{void}$)</td>
<td>-2×10^{-4}</td>
<td>-4×10^{-4}</td>
</tr>
<tr>
<td>TRU production eff. (%)**</td>
<td>-51</td>
<td>-45</td>
</tr>
</tbody>
</table>

* Active core region ** Net increase in TRUs divided by the total amount of fissioned actinides through the total fuel resident time in the core.
16. Hitachi’s activity outline

Cooperate on SFR/Fuel cycle national projects
Investigate an option based on BWR experiences

- Sodium-cooled MA burner
 Advancing SFR performance
 Conducted as MEXT project

- BWR TRU burner
 Advancing BWR features
 Study on option for SFR

Flexible fuel cycle
Adaptive to various fuel cycles,
debris management
Conducted as MEXT project
17. FFCI concept

Recover only U and store TRUs as recycle material with FPs
Meet FBR and various cycle deployment flexibly

FFCI: Flexible Fuel Cycle Initiative

Standard system

LWR spent fuel

Recovery

FBR cycle

Recovered U

(Pu,MA,U)

FFCI system

LWR spent fuel

Fluorination

Recycle material

FBR cycle*

Recovered U

(Pu,FP,MA,U)

A: FBR introduced on schedule
B: Delay in FBR introduction
* Also applicable to RBWR, ADS cycles
18. FLUOREX concept

Compact and flexible hybrid process of uranium (U) separation with fluorination and solvent extraction

* FLUOREX : Hybrid Process of Fluoride Volatility and Solvent Extraction

Spent fuel (SF) → Decladding → Uranium fluorination → PuF₆ trap → Storage or re-enrichment

UF₆ purification → U/Pu/MA recovery → MA-MOX fuel fabrication

Fluoride → Oxide → High level waste

Easy to process

Fast separation
Compact facility

Applicable to LWR-FBR/RBWR cycle
Applicability of fluorination was confirmed with simulated and actual spent fuel (SF) experiments.

\[
\text{UO}_2(\text{solid}) + 3\text{F}_2(\text{gas}) \rightarrow \text{UF}_6(\text{gas}) + \text{O}_2(\text{gas})
\]

Simulated SF test

Actual SF test
20. Application to debris treatment

Decompose debris and separate U/Pu with compact facility
Flexibly respond to disposal, storage and reprocessing

Fuel Debris
Fuel: U, Pu, FP, MA
Clad: SUS, Zr, etc.
Control rod: SUS, B_4C
Sea water: Na, Cl, etc.
Concrete: Si, Ca, Al, etc.

Volatile Fluorides
(U, Pu, FP, B, C, Cl)

Oxide Conversion
Steam

Disposal
(Waste)
Vitirificat.

Impurities
U, Pu, etc.
Reprocessing

Off-gas Treat.

Reprocessing case
Long-term storage
Disposal case

* Easy accountancy

Fuel debris treatment process with fluorination method
Hitachi contributes reduction of radioactive wastes:

- Cooperates on national project through development of the advanced sodium-cooled MA burner reactor
- Investigate feasibility of the TRU burner as an option for sodium-cooled fast reactor based on the BWR experience
- Cooperates on national projects through development of reprocessing and fuel debris treatment technologies with fluorination
23. Na plenum concept
