10.10.2014 International symposium on present status and future perspective for reducing radioactive wastes ~ aiming for zero-release ~

Laser Isotope separation

Keiichi YOKOYAMA

Kansai Photon Science Institute & Quantum Beam Science Center, Japan Atomic Energy Agency

Isotopes

- Atoms with the same chemical character but different masses $^{235}\text{U},\,^{238}\text{U},\,..$
- Strongly related with nuclear reactions

Fission, nuclear spallation, neutron capture

- Abundant in spent nuclear fuel

U, Pu, MA, FP

- Both radioactive and non-radioactive isotopes exist

^{137}Cs , ^{135}Cs , ^{133}Cs

- Isotope separation: to separate different isotopes in mixture

Why isotope separation demanded?

- To qualify neutron balance in transmutation

Some nuclides need isotope separation before their transmutation.

- To collect valuable rare metals from spent nuclear fuels without radioactivity 106Pd, 107Pd

Principal difficulty in the isotope separation

- Request for extremely high selectivity

Separation factors for cesium separation and uranium enrichment

Separation factor $\alpha \sim 9800!$ $\alpha \sim 20$

Require three-orders of magnitude higher SF \rightarrow A paradigm shift is desired.

Why so small separation factor?

- No chemical method different from element separation
- Only mass-difference usable
- Very small mass difference in LLFP ¹³⁵Cs, ¹³³Cs
- Separation factor and cascade number in known methods

	Gas diffusion	Gas centrifuge	Molecular laser
Separation factor	1.003	1.4	<10
Cascade number	1000	10	1

- Laser method with as many cascade as gas diffusion method?

 \rightarrow We proposed "quantum-diffusion method".

Quantum diffusion, how innovative

- From the classical mechanics to the quantum
- Surprisingly high isotope selectivity

- Relying on two hot topics in mathematics

→ "Quantum walk" and "Anderson localization"

How to realize quantum diffusion

- Repeatedly irradiate THz-wave laser pulse to diatomic molecules
 - \rightarrow Quantum diffusion realizes in the angular momentum space

of molecular rotation

L. Matsuoka et al., J. Korean Phys. Soc. 59, 2897 (2011).

Pure rotational transition spectrum

Quantum diffusion enables "isotope-selective heating"!?

 Corresponding to a laser method with a large-scale cascade as large as the gas diffusion method

Numerical simulation

- Pronounced isotope selectivity in the CsI molecule

L. Matsuoka et al., GLOBAL2011, 392063

- By further pulse shaping, perfect separation possible
- Predicting a separation factor of 8000 for CsI @ 1000K

Experimental demonstration

- Demonstrated with an ordinary laser in place of the THz laser

- THz-wave laser is under development for the true demonstration

Prospect to realization and key techniques

Strong point

- Molecular laser method without ultracold gaseous feed
 - (Such a process has already been industrialized.)

Techniques to be developed

- Recovery scheme
- High-power THz-wave laser
- Precise manipulation of THz-wave pulses

Framework of the project and current activity

- @JAEA Kansai Photon Science Institute (Kizu, Kyoto)
- THZ-Wave laser (Nagashima, Ochi, Maruyama, Tsubouchi, Kono, Kiriyama, Okada, Kosuge)
- Demonstration (Matsuoka, Hashimoto, Yoshida) Recovery (Ichihara, Kurosaki, Kobayashi)

Road map

Photon frontier network (MEXT)

Summary

- We proposed a new isotope-selection scheme using quantum diffusion to override the difficulty in the isotope separation of heavy elements.

- Some fundamental studies are running at KPSI to realize quantum diffusion method.

Advocation of zero release of nuclear waste will drive germination of new science and technology.