HOME  >   News & Information  >   Recruitment  >   Recruitment for Postdoctoral Fellow(Fixed-term researcher)

Recruitment

Recruitment for Postdoctoral Fellow
(Fixed-term researcher)

  1. Physics Chemistry Mathematics Geo and Environemtal Sciences Biology Radiation
    Mechanics Material Electricity and Electronics Architectural and Civil Engineering Applied Physics Applied Chemistry
    Chemical Engineering Measurements and Instruments Computer and Information Nuclear Nonproliferation and
    Nuclear Security
    Other All
  2. No Theme
    Department Section Location Contact Person Radiation Worker/
    Non-Radiation Worker
    Field
    (for reference)
    Summary
    J3Experimental and analytical studies on the fuel behavior under accident conditions of light-water-reactor
    Nuclear Safety Research CenterFuel Safety Research GroupNuclear Science Research InstituteMasaki Amaya
    Tel: +81-29-282-5028
    E-mail: amaya.masaki@jaea.go.jp
    Non-Radiation WorkerMechanics,
    Material,
    Electricity and Electronics,
    Measurements and Instruments,
    Computer and Information,
    Physics,
    Chemistry
    The objective of this study is to develop and/or improve models concerning fuel behavior under reactivity-initiated accidents (RIAs), loss-of-coolant accidents (LOCAs), etc. by conducting experiments on light-water-reactor fuel and/or analyses using calculation codes etc. The following or related studies will be carried out.
    ・Model development and evaluation by using calculation codes etc., concerning effects of the deformation of fuel cladding tube and axial relocation of fuel pellets inside the fuel rod on the fuel temperature during LOCAs.
    ・Analysis and model improvement in terms of fuel dispersal behavior following failures of fuel cladding tube during accidents by using calculation codes etc.
    J4Study on material degradation and integrity evaluation of nuclear reactor components
    Nuclear Safety Research CenterMaterials and Water Chemistry Research GroupNuclear Science Research InstituteSatoshi Hanawa
    Tel: +81-29-282-5044
    E-mail: hanawa.satoshi@jaea.go.jp
    Radiation WorkerMechanics,
    Material,
    Measurements and Instruments
    Integrity of nuclear reactor components such as reactor pressure vessel (RPV) for long-term operation should be confirmed by the latest scientific knowledge. In order to enhance the knowledge for evaluating the structural integrity of the components, effect of environmental conditions such as neutron irradiation, high temperature-high pressure coolant on material degradation is investigated by micro-structural analysis and mechanical testing. Not only from the viewpoint of material degradation mentioned above, but the approach by fracture mechanics is also performed.
    J5Study on the methodology of estimation of property changes in radioactive waste disposal system due to natural events
    Nuclear Safety Research CenterEnvironmental Safety Research GroupNuclear Science Research InstituteSeiji Takeda
    Tel: +81-29-282-6170
    E-mail: takeda.seiji@jaea.go.jp
    Non-Radiation WorkerPhysics,
    Chemistry,
    Geo and Environemtal Sciences,
    Computer and Information,
    Architectural and Civil Engineering,
    Measurements and Instruments
    In the safety assessment for a geological disposal of radioactive wastes, it is important to estimate the effect of property changes in radioactive waste disposal system resulting from the occurrence of natural events such as volcanic and magmatic activity, seismic activity, uplifts and denudation etc.. In this study, the methodologies for estimating the possibility of the occurrence and the effect of topographical, hydrological/hydrogeological, physical and geochemical response to geological and/or climatic factors are developed using previous observation and data characterized by the factors in Japan.
    J10Experimental and analytical study on thermohydraulic safety of light water reactor
    Nuclear Safety Research CenterThermohydraulic Safety Research GroupNuclear Science Research InstituteYasuteru Sibamoto
    Tel: +81-29-282-5263
    E-mail: sibamoto.yasuteru@jaea.go.jp
    Non-Radiation WorkerMechanics,
    Measurements and Instruments,
    Computer and Information
    This experimental and analytical research focuses on thermo-hydraulic phenomena occurring in the reactor and the containment of the nuclear power plant during an accident before and after core damage. For the experimental study, two-phase flow and/or heat transfer are investigated using a high-pressure reactor simulation test facility or a small-scale test device that exits or will be built for this research. The development of the two-phase flow measurement technique is also an important topic for this research. By using the data obtained from the experiments, prediction models are validated and improved in order to be used in lumped parameter codes such as RELAP5 and MELCOR, or the CFD codes. A specific research topic will be selected considering the request by the applicant.
    J11Study on the methodology of the structural integrity assessment for nuclear reactor components
    Nuclear Safety Research CenterStructural Integrity Research GroupNuclear Science Research InstituteYinsheng Li
    Tel: +81-29-282-6457
    E-mail: li.yinsheng@jaea.go.jp
    Non-Radiation WorkerMechanics,
    Architectural and Civil Engineering,
    Material,
    Physics,
    Applied Physics,
    Measurements and Instruments,
    Computer and Information
    Due to the long term operation of some domestic nuclear power plants and occurrence of the earthquakes beyond the designed seismic ground motion, developing the methodologies of structural integrity assessments for the reactor components concerning seismic loading, impact loading and age related degradation mechanisms such as neutron irradiation embrittlement, stress corrosion cracking and so on is of great importance. In this theme, one of the following related researches will be conducted.
    - Advanced structural integrity assessment research for important nuclear components, such as failure estimation, crack propagation or weld residual stress evaluation, on the basis of numerical simulation, material testing, and fracture testing and so on
    - Advanced seismic safety and impact assessment research including development of three-dimensional evaluation models of nuclear facility buildings, components and piping systems, and numerical simulation considering nonlinear mechanical properties.
    J13Experimental and theoretical studies of exotic nuclei
    Advanced Science Research CenterSector of Nuclear Science ResearchNuclear Science Research InstituteKatsuhisa Nishio
    Tel: +81-29-282-5454
    E-mail: nishio.katsuhisa@jaea.go.jp
    Radiation WorkerPhysics,
    Mathematics,
    Radiation,
    Applied Physics,
    Measurements and Instruments,
    Computer and Information,
    Other
    Experimental and theoretical studies of unstable nuclei and superheavy elements will be prompted. The research topics include nucler structure, nuclear reaction, and nuclear fission for nuclei far from the stable isotopes. In experimental programs, JAEA facilities and/or external facilities will be used to produce exotic nuclei. In theorey subjects nuclear structure and fission process will be studied by taking advantage of the JAEA supercomputer.
    (http://asrc.jaea.go.jp/soshiki/gr/HENS-gr/index_e.html)
    J14Nuclear Chemistry of superheavy elements
    Advanced Science Research CenterSector of Nuclear Science ResearchNuclear Science Research InstituteKazuaki Tsukada
    Tel: +81-29-282-5491
    E-mail: tsukada.kazuaki@jaea.go.jp
    Radiation WorkerChemistry,
    Physics,
    Radiation,
    Measurements and Instruments,
    Applied Chemistry
    The main objective is to understand chemical and atomic properties of superheavy elements (SHEs) placed at the uppermost end of the Periodic Table. This theme will focus on the valence electronic structure of SHEs from the measurements of ionization-energy, electron spin, surface adsorption, ionic radii, redox potentials, and molecular formations. The subjects include development of the measuring system based on an "atom-at-a-time" method. These experiments will be performed at the JAEA Tandem Accelerator Facility.
    (http://asrc.jaea.go.jp/soshiki/gr/HENS-gr/nc/index-e.htm)
    J19Interdisciplinary study on emergent properties of nanoscale structures by using advanced beams
    Advanced Science Research CenterResearch Group for Nanoscale Structure and Function of Advanced MaterialsNuclear Science Research InstituteShin-ichi Shamoto
    Tel: +81-29-284-3521
    E-mail: shamoto.shinichi@jaea.go.jp
    Radiation WorkerPhysics,
    Chemistry,
    Material,
    Applied Physics,
    Applied Chemistry,
    Measurements and Instruments
    Structures and physical properties of materials from single-layer to bulk will be studied by using the advanced beams (neutron, positron and muon) produced at accelerator and reactor based facilities such as J-PARC. Those experiences are not required but high motivation for the researches are preferred.
    J22Study on Accurate Nuclear Data Measurement
    Nuclear Science and Engineering CenterNuclear Data CenterNuclear Science Research InstituteAtsushi Kimura
    Tel: +81-29-282-5796
    E-mail: kimura.atsushi04@jaea.go.jp
    Radiation WorkerPhysics,
    Measurements and Instruments,
    Radiation
    Accurate neutron cross sections for minor actinides (MAs) and long-lived fission products (LLFPs) are required for development of nuclear transmutation system. However, there are large gaps between current uncertainties and required uncertainties on these nuclear data. In order to decrease the uncertainties of the cross sections, we are carrying out neutron-TOF experiments using the high intensity pulsed neutron source at J-PARC. Since the increase of the neutron flux is in progress, it is essential to develop technologies related to data acquisition and data analysis especially designed for high count rate due to high neutron flux. In this theme, the assigned post doc fellow is requested to develop a fast data acquisition system and/or analysis methods (e.g. background evaluation due to scattering neutrons) in order to improve the accuracy of the nuclear data for MAs and LLFPs in wide neutron energy range.
    http://wwwndc.jaea.go.jp/Labo/
    J23Elucidation of radiation effects due to exposure from insoluble particle
    Nuclear Science and Engineering CenterResearch Group for Radiation Transport AnalysisNuclear Science Research InstituteTatsuhiko Sato
    Tel: +81-29-282-5803
    E-mail: sato.tatsuhiko@jaea.go.jp
    Radiation WorkerRadiation,
    Biology,
    Computer and Information,
    Measurements and Instruments
    When a person inhales insoluble cesium with high radioactivity (so-called, Cs-ball), radiation dose can be extremely high within a limited micro region. Then, radiation effects can differ between insoluble cesium and cesium in other chemical forms. Aims of this theme are to clarify physical characteristics for internal exposure from Cs-ball using the Particle and Heavy Ion Transport code System (PHITS) and to elucidate influences of the physical characteristics on radiation effects (e.g., cell population response) by experimental studies.
    J24Fission product behavior in the Primary Containment Vessel of Light Water Reactor
    Nuclear Science and Engineering CenterDevelopment Group for LWR Advanced TechnologyNuclear Science Research InstituteMasahiko Osaka
    Tel: +81-29-282-5922
    E-mail: ohsaka.masahiko@jaea.go.jp
    Radiation WorkerChemistry,
    Physics,
    Material,
    Chemical Engineering,
    Measurements and Instruments
    Fission product (FP) behavior in the Primary Containment Vessel (PCV) of Light Water Reactor (LWR) should be known for the estimation of FP amounts released into environment (source term estimation) in the case of severe accident. Simulant FP aerosol behavior is directly viewed and deposited aerosol is characterized by experiments in a small-sized model PCV. Results are analyzed by thermal-hydraulic and chemical analysis codes to interpret the aerosol behavior in PCV. Complementary experiment/analysis on the FP aerosol formation and deposit revaporization/resuspention behaviors would be conducted, for the comprehensive understanding of FP behavior in the PCV under various conditions of such as hydraulics, moisture content, surface status and so on. The research is conducted in collaboration with researchers in the group.
    J28Electronic structure research of actinide and the related materials with synchrotron radiation X-ray spectroscopy
    Materials Sciences Research CenterElectronic Structure Research GroupEnergy and Environment Materials Science DivisionHiroshi Yamagami
    Tel: +81-791-58-2607
    E-mail: yamagami@cc.kyoto-su.ac.jp
    Radiation WorkerPhysics,
    Applied Physics,
    Material,
    Measurements and Instruments
    Our group is carrying out a research on electronic structure by synchotron radiation X-ray spectroscopies (soft x-ray angular-resolved photoemission, soft x-ray magnetic circular dichroism, and hard x-ray photoemission) at SPring-8 in order to elucidate a mechanism holding physical properties of actinides and the related materials including uranium compounds. Furthermore, we are engaged on Fukushima environmental recovery research and reactor decommissioning research. For going ahead with the above-mentioned research, our group will hope a researcher who can take part in a technical development on x-ray spectroscopy at beam lines of synchrotron radiation facility.
    J30In situ studies of metallic materials using time-of-flight neutron diffraction
    J-PARC CenterMaterials and Life Science Directorate Neutron Science SectionJ-PARC CenterStefanus Harjo
    Tel: +81-29-284-3266
    E-mail: stefanus.harjo@j-parc.jp
    Radiation WorkerMaterial,
    Mechanics,
    Applied Physics,
    Physics,
    Measurements and Instruments
    A high-resolution & high-intensity time-of-flight neutron diffractometer (TAKUMI) was constructed and now is operated for researches on various engineering materials at the Material & Life Science Experimental Facility of J-PARC. In this theme, the following studies using TAKUMI for the advanced steels and advanced light metals are planned. (1) The relationship between the microstructure evolution during deformation and the mechanical & functional properties, (2) the relationship between microstructural evolution during thermo-mechanical treatment and the mechanical properties, and (3) development of in situ hybrid neutron diffraction measurement technique (concurrent measurements of digital image correlation method and infrared thermography) for various deformation tests. Supporting researches at TAKUMI are also required.
    J31Study of Performance Improvement for the J-PARC linac
    J-PARC CenterAccelerator DivisionJ-PARC CenterHidetomo Oguri
    Tel: +81-29-284-3132
    E-mail: oguri.hidetomo@jaea.go.jp
    Radiation WorkerPhysics,
    Applied Physics,
    Radiation,
    Electricity and Electronics,
    Measurements and Instruments
    The goal of the J-PARC proton accelerators is to achieve stable beam operation at 1 MW. The linac is a beam injector for the J-PARC accelerator. Beam loss reduction is crucial to increase beam power and to achieve stable operation. And also, long-lasting component and failure prediction diagnosis are important for reliable operation. The subject of this theme is to study of performance improvement for the J-PARC linac. He/she will perform a study of beam loss reduction theoretically or experimentally, or a development of long-lasting component or failure prediction diagnosis for stabler operation of the linac.
    J32The experimental study to elucidate the relationship between functions and dynamics of bio-macromolecules using deuterated samples
    J-PARC CenterNeutron Science SectionJ-PARC CenterKaoru Shibata
    Tel: +81-29-284-3199
    E-mail: shibata.kaoru@jaea.go.jp
    Radiation WorkerBiology,
    Chemistry,
    Measurements and Instruments
    By mainly using the inelastic and quasielastic scattering spectrometer DNA installed in J-PARC/MLF neutron facility, the corresponding researcher will perform the experimental study to investigate the relationship between functions and dynamics of bio-macromolecules, such as the molecular mechanisms of the functions of enzymatic proteins, using particularly the deuterated protein samples.
    Therefore, it will be given special importance that the corresponding researcher has the extensive experience of preparation of bio-macromolecules, especially proteins by using bacterial expression systems.
    The corresponding researcher will also be expected to perform the research assistance for the related research fields in addition to his/her own research.
    J33Development of scanning neutron microscope system
    J-PARC CenterTechnology Development SectionJ-PARC CenterKazuya Aizawa
    Tel: +81-29-284-3703
    E-mail: aizawa.kazuya@jaea.go.jp
    Radiation WorkerMeasurements and Instruments,
    Radiation,
    Electricity and Electronics,
    Applied Physics,
    Physics
    The employee will develop a neutron detector by new detection principle with fast readout and super-high spatial resolution based on superconducting detector in Materials and Life Science Experimental Facility at J-PARC. The goals of the theme are an establishment of an energy-dispersive scanning neutron-microscope system and its application to materials and life science research.
    J34Development of a He-3 neutron spin filter and promotion of research using pulsed polarized neutrons.
    J-PARC CenterTechnology Development SectionJ-PARC CenterTakayuki Oku
    Tel: +81-29-284-3196
    E-mail: takayuki.oku@j-parc.jp
    Radiation WorkerPhysics,
    Radiation,
    Material,
    Applied Physics,
    Measurements and Instruments
    At J-PARC MLF, a He-3 neutron spin filter (NSF) based on spin-exchange optical pumping method has been developed for the efficient utilization of pulsed neutrons. The employee will improve the He-3 NSF performance and adapt it to various kinds of experiments at J-PARC MLF. The employee will also develop sample environment which is optimized for use of the He-3 NSF, and will promote research using pulsed polarized neutrons.
    J37Study of aging deterioration mechanism and preservation technology by using the material of Fugen NPP
    Fugen Decomissionning Engineering CenterPlant Material Examination SectionTsuruga headquartersYoshiaki Katano
    Tel: +81-770-26-1221
    E-mail: katano.yoshiaki@jaea.go.jp
    Radiation WorkerMaterial,
    Measurements and Instruments,
    Physics,
    Chemistry,
    Chemical Engineering,
    Computer and Information
    The operation period of a nuclear power plant is limited to 40 years by law in Japan. The Nuclear Regulation Authority (NRA) can extend the period by 20 years more when the plant passed the review of the NRA. By using the real used material of the “Fugen” NPP after 25 years operation, the research of the deterioration and preservation mechanism is carried out for the long-term integrity of nuclear facilities. The main study programs are aging mechanism related to embrittlement by corrosion, thermal and radiation characteristics, by using data obtained from the three-dimensional atom probe (3DAP), the electron beam backscattering diffraction (EBSD) and focused ion beam scanning electron microscope (FIB-SEM) in the laboratory of the Fugen site. Moreover, the study of mechanism theory is implemented by simulation technology of the microscopic stress analysis by ABAQUS and phase field method. In this way, it will contribute to the long-term integrity of the nuclear power plant, by investigating the aging deterioration mechanism and improving the preservation technology.
    J38Study on methodogies for modelling and analysis of geological environment
    Horonobe Underground Research CenterSedimentary Environment Research GroupHoronobe Underground Research CenterToshinori SATO
    Tel: +81-1632-5-2022
    E-mail: sato.toshinori@jaea.go.jp
    Non-Radiation WorkerPhysics,
    Geo and Environemtal Sciences,
    Architectural and Civil Engineering,
    Measurements and Instruments
    The Horonobe Underground Research Laboratory (URL) Project is being pursued to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, geoscientific research and R&D on geological disposal. One of theses, study on methodogies for modelling and analysis of geological environment, such as, geology, groundwater flow, geochemistry for long period have been performed. Modelling study for excavation disturbed zone and permeability of faults based on the results of in-situ and laboratory test also have been developed.
    ()
    J41Ra which exists in the mineral Study about the physico-chemistry-like special quality of the isotope
    Ningyo-toge environmental engineering centerEnvironmental engineering Material R&D DivisionNingyo-toge Environmental Engineering CenterYoshiyuki Ohara
    Tel: +81-868-44-2211
    E-mail: ohara,yoshiyuki@jaea.go.jp
    Non-Radiation WorkerPhysics,
    Geo and Environemtal Sciences,
    Measurements and Instruments
    We are working on environmental restoration business of uranium mine which had ended mine activity at Ningyo-toge Environmental Engineering Center at present.
    It’s a very important problem for safe and efficient environmental restoration business to make clear the factor which ruled behavior of radioactive materials in the water conservation area in Ningyo-toge basin.
    Minerals containing naturally occurring uranium and thorium have isotopes of radium produced as progeny nuclides within their decay series. Isotopes of radium present in minerals are considered to have different physicochemical properties, reflecting the history (such as the mode of disintegration and the number of disintegration etc.) until they are produced. Therefore, in this study, by investigating the existence state of radium isotope in minerals, it contributes to making clear of the difference in elution behavior between radium isotopes. Also, a research of the difference in the existence state of radium isotopes between different kinds of minerals gives important knowledge when choosing matrix of solidified body of radioactive waste, and is important for promoting uranium mine environmental restoration project.
    F5Study for advancing measurement and analysis techniques of radiation and radioactive substances in the environment
    Fukushima Environmental Safety CenterFukushima Radiation Measurement GroupFukushimaMasanori Takeyasu
    Tel: +81-247-61-2911
    E-mail: takeyasu.masanori@jaea.go.jp
    Non-Radiation WorkerChemistry,
    Measurements and Instruments,
    Radiation,
    Geo and Environemtal Sciences
    The measurement results of radiation in the environment are examined, and the measurement method is optimizated in terms of time and spacial resolutions. Also, quick analytical methods are developmed for radioavtivity in environmental samples.
    By these, it is expected that the measurement method of air dose rate is advanced and that the radiocesium, Sr-90 and Tritium in various environmental samples are analysed and determined quickly.
    http://fukushima.jaea.go.jp/initiatives/cat01/pdf1511/2-2_takeishi.pdf
    F8Development of volume reduction of Cs-contaminated soil and elucidation of Cs sorption-desorption mechanism.
    Materials Sciences Research CenterActinide Chemistry GroupEnergy and Environment Materials Science DivisionHideaki Shiwaku
    Tel: +81-791-58-2615
    E-mail: shiwaku@spring8.or.jp
    Radiation WorkerChemistry,
    Physics,
    Geo and Environemtal Sciences,
    Chemical Engineering,
    Measurements and Instruments
    Radioactive cesium (Cs-134 and Cs-137) released to environment by the accident of TEPCO Fukushima Daiichi Nuclear Power Plant. Radioactive cesium was taken into soil in the environment after the accident immediately and produced enormous contaminated soil. Contaminated soil is planned to be exported outside Fukushima after 30 years. Therefore, the development study of the volume reduction of this contaminated soil is very important from the viewpoint of economic efficiency, environmental impact, radiation exposure, etc. In this study, structural analysis will be performed using synchrotron radiation (SPring-8) on the elucidation of radioactive cesium adsorption mechanism for farmland soil, including many clay minerals such as weathered biotite. We will contribute to environmental recovery of Fukushima.