液体電極プラズマ発光分光分析法(LEP-OES)を利用した 放射性元素分析のための超小型分析デバイスの開発

装置が小型でグローブボックス(GB)等内への搬入が容易、且つ遠隔でのメン テナンス性にも優れる放射性元素分析法を確立するため、LEP-OESに着目

✓ ガス供給設備、冷却システム、大容量電源が不要⇒シンプル構造 ✓ 発光部が小型⇒GB等内へ容易に設置可能

図2 低放射性廃液(LLW)中のNa、K、Caの発光ピ・

表1 LEP-OES測定時の印加電圧、検出限界(LOD)、 定量下限值(LOQ)

元素	波長 (nm)	電圧 (V)	LOD (mg/L)	LOQ (mg/L)
Cs	852.1	800	0.0052	0.022
Sr	460.7	800	0.055	0.18
Na	819.5	800	0.15	0.49
K	766.5	800	0.0093	0.031
Ca	422.7	800	0.12	0.41
Ва	455.4	800	5.9	20
Тс	264.7	1000	1.9	6.4

主な成果(査読付き論文)

V.-K.Do, M.Yamamoto, S.Taguchi, Y.Takamura, N.Surugaya, T.Kuno, Talanta, 183, p.283-289 (2018). 1)

優秀発表賞受賞時 (H30年度日本原子力学会北関東支部 若手研究者発表会

- M.Yamamoto, V.-K.Do, S.Taguchi, T.Kuno, Y.Takamura, Spectrochim. Acta B, 155, p.134-140 (2019). 2)
- ⇒その他、国内会議、国際会議での発表多数