

鉱山閉山措置に向けての 広域バックグラウンド分析評価 及び 安全評価シナリオ解析

(2021.3.18 鉱山跡措置技術委員会 資料)

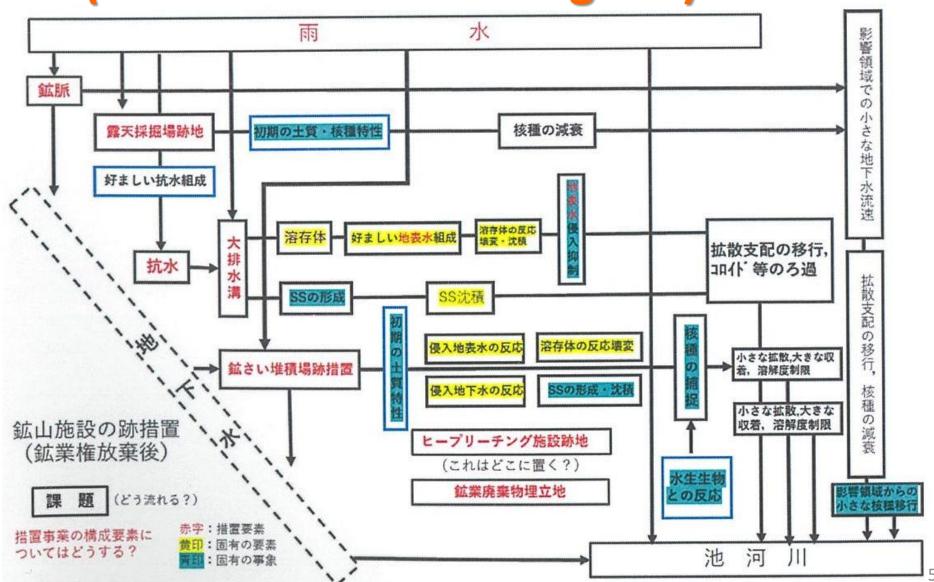
国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 人形峠環境技術センター 環境保全技術開発部 環境保全技術開発課

安全評価シナリオ解析

ウラン鉱山の閉山措置は、地域の特徴を踏まえた安全 評価シナリオ解析が必要である。

- ウラン鉱山という特徴から放射性物質も対象となる。
- 自然由来・人為影響の区別が困難であることが特徴の一つ。
- 鉱山からの物質の拡散の主たる経路は水の流れである。
- 大気中への拡散は常温で気体物質であるラドンが存在するが、 拡散希釈を考慮して、予測評価の対象としていない。

鉱山からの放出物質の拡散を予測し、その影響を 評価する環境影響評価

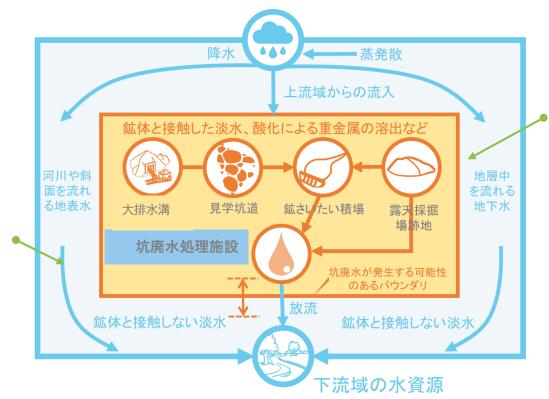


考え方

- 水 (地下水、河川水) を輸送媒体としたシナリオを前提 広域の数値シミュレーションで流動を予測する。
- 「**移行経路**」は、同定モデルによるシミュレーション結果を 参照する
- 「暴露対象」の推定は、対象地域における実際の水利用状況を反映する⇒国土交通省が公開する主要水系調査(利水現況図)を用いる
- 発生源」には、対象地域内の全ての鉱山(人形峠鉱山、 東郷鉱山、倉吉鉱山)のほか、未開発鉱床(高清水、三徳山、 飯盛山、羽衣石、十二川、辰巳峠、倉見東部ほか)も含める。
- これらに、流域スケールの上流、中流、下流における地域的特 徴及び相互関係を加味する
- P D を作成して関連づける。

PID(Process Influence Diagram)の作成例

バックグラウンド評価の重要性



- ・バックグラウンドを把握することにより事業による 発生負荷を把握できる。
- ・バックグラウンド把握のために過去のモニタリング データ整理が必要

バックグラウンド評価の重要性

- 事業対象地域は自然由来(バックグラウンド)の放射性核種が存在する。
- **自然・人為由来**の場は重なっており、両者の**区別は困難**である。
- 鉱山閉山事業の周辺環境に対する影響や対策効果は、坑廃水が発生・出現する可能性のある範囲(事業バウンダリ)を重点的にモニタリングすると共に、自然由来の変化をベースとする必要がある。

確定的に線引きする ことはできない(季節 変化や地下地質構造 の不確実性)

自然由来の放射性 核種が存在する

	分類	データ例	
1.	気象	気象庁、国交省水文水質DB	
2.	地形	国土地理院、国土数值情報、鏡野町、安全管理課	
3.	土地利用	国土数値情報	
4.	地質	試錐検層柱状図(人形峠、神ノ倉、三徳山、方面、 飯盛山、麻畑、羽衣石、八葉寺、十二川、中津河、 長者、恩原、辰巳峠、倉見東部、倉吉、歩谷ほか)、 20万分の1地質図(鳥取)、5万分の1地質図(倉吉、 奥津)、鉱さいたい積場付近の基盤基底線図	
5.	〇一般公表データも利用できるデータは多いです。		
6.			

データ項目	数量	測定期間(頻度)	備考
	19地点	1993-2017(日)	国土交通省
河川流量	1地点	2014-2016(日)	JAEA、池河川
	1拙占	2005-2019(日)	IAFA 峠5号

地下水位 ボーリング 坑排水 鉱さい堆積 環境放射線 堆積場環境 〇人形峠で蓄積してきたデータです。

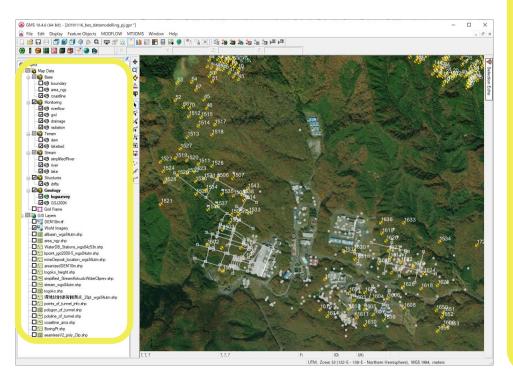
〇河川流量、環境放射線監視データは国、県 の観測結果も利用します。 、露天 削時

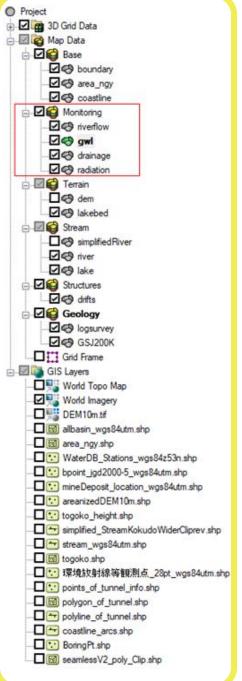
学坑、露天

²²²Rn

8地点1996-2019(四半期毎)溶解性鉄6地点1996-2019(四半期毎)溶解性マンガン11地点1996-2019(四半期毎)238U、234U9地点1996-2019(四半期毎)235U	ノーンハい	1228 6 8121 H 173 H	
11地点1996-2019(四半期毎)238U、234U9地点1996-2019(四半期毎)235U		(, , , , , , , , , , , , , , , , , , ,	
9地点 1996-2019(四半期毎) ²³⁵ U	6地点	1996-2019(四半期毎)	溶解性マンガン
	11地点	1996-2019(四半期毎)	238U、234U
11 H = 1004 2010 (m)/HI (=) 222D	9地点	1996-2019(四半期毎)	235U
11地点 1996-2019(四半期毋) 222Rn	11地点	1996-2019(四半期毎)	²²² Rn
11地点 1996-2019(四半期毎) ²²⁶ Ra	11地点	1996-2019(四半期毎)	²²⁶ Ra
2地点 1996-2019(四半期毎) 砒素	2地点	1996-2019(四半期毎)	砒素
2地点 1996-2019(四半期毎) 全α、β	2地点	1996-2019(四半期毎)	
1地点 1996-2019(四半期毎) ふっ素	1地点	1996-2019(四半期毎)	ふつ素

気象、地象、水文、放射線量、 鉱山施設等の基礎データ 生データ デジタル化 データモデル(共通データ) 地図上の位置情報 をもつ点、線、面の オブジェクトと時間 情報をもつデータ point polyline polygon 本体を関連付ける モデリング・可視化技術 データ駆動型モデル プロセス型モデル タンクモデル、機械学習、統計・ 地下水流動モデル、気液二相流

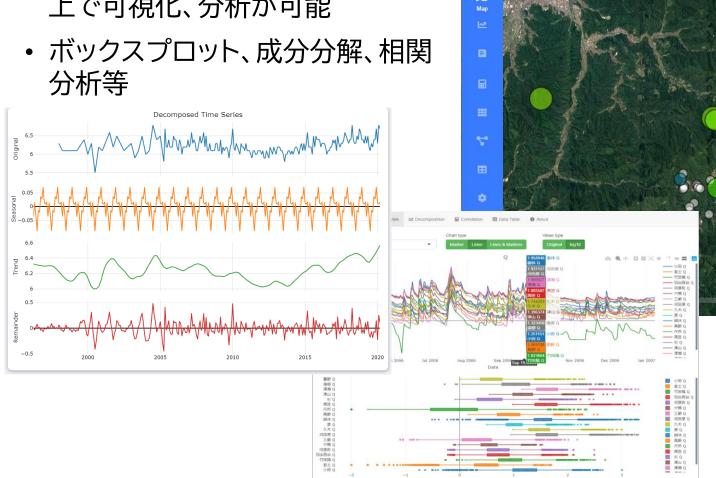

モデル、地球化学モデルほか

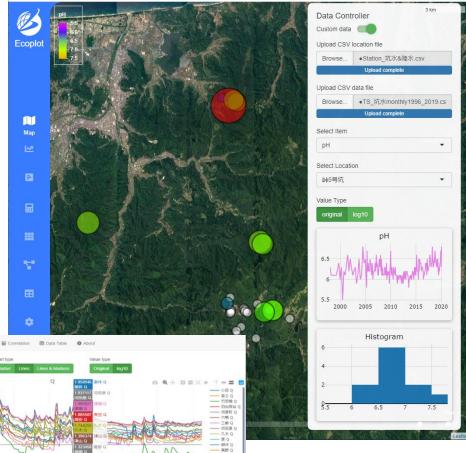

確率モデルほか

10

- **地図上**の点、線、面とデータ本体を 紐付けた**データー元化**
- 可視化、分析及びシミュレーション 他での迅速なデータ利用
- 一般的なGISソフトウェアとの互 換性があり、データ蓄積に伴う拡張 性も高い

データ分類毎にデータ収録


GISデータ



一元化したデータの可視化、分析

データ可視化・分析

一元化されたデータは、クラウド 上で可視化、分析が可能

12

-1998

20~30年以上前

NA

1999-2008 10~20年前 2009-2018

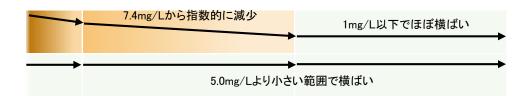
直近10年間

2020-現在~

pН

人形峠5号

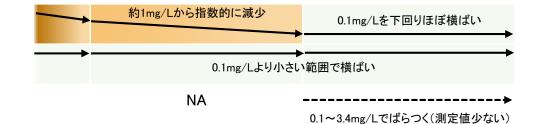
神倉1、2号、麻畑1-3号、 赤和瀬、歩谷 中津河坑


方面下1号

SS

人形峠5号

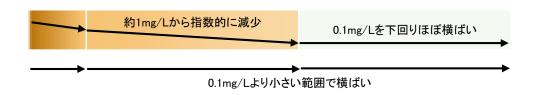
神倉1,2号、麻畑1-3号、赤和瀬、 歩谷、方面下1号



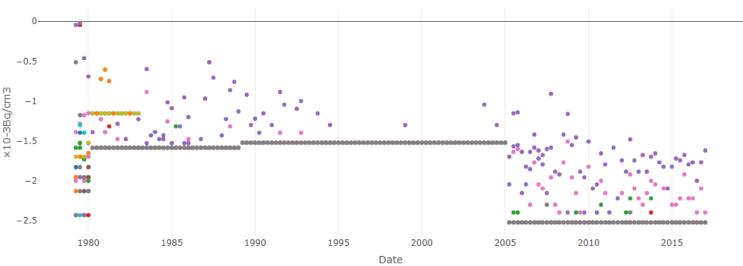
溶解鉄

人形峠5号、麻畑3号

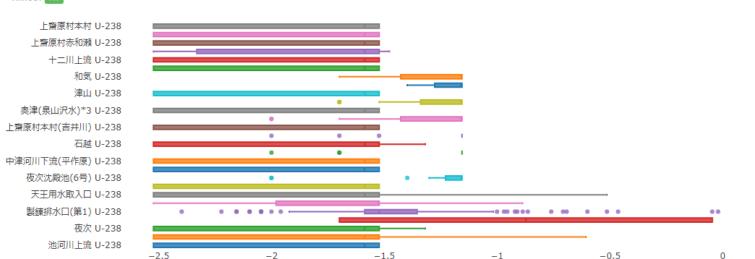
神倉1号、麻畑1,2号、中津河坑


神倉2号

溶解マンガン


人形峠5号、麻畑3号

麻畑1,2号、中津河坑、 方面下1号

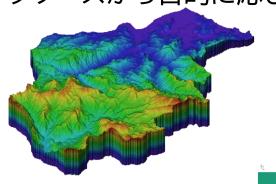


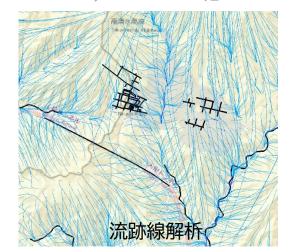
238

- 池河川上流 U-238
- 診療所沢水 U-238
- 夜次 U-238
- 製錬排水□(第2) U-238
- 製錬排水口(第1) U-238
- 池河川中流 U-238
- 天王用水取入口 U-238
- 十二川下流 U-238
- 夜次沈殿池(6号) U-238
- 赤和瀬川下流 U-238
- 中津河川下流(平作原) U-238
- 恩原貯水池 U-238
- 石越 U-238
- 白雲閣横沢水 U-238
- 上齋原村本村(吉井川) U-238
 - 下斉原(吉井川) U-238

Times: All

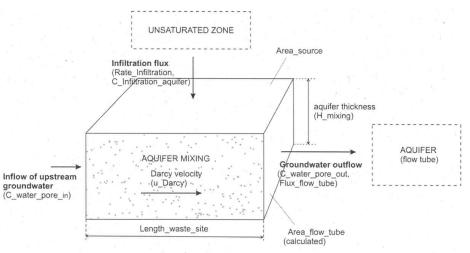
下斉原(吉井川) U-238

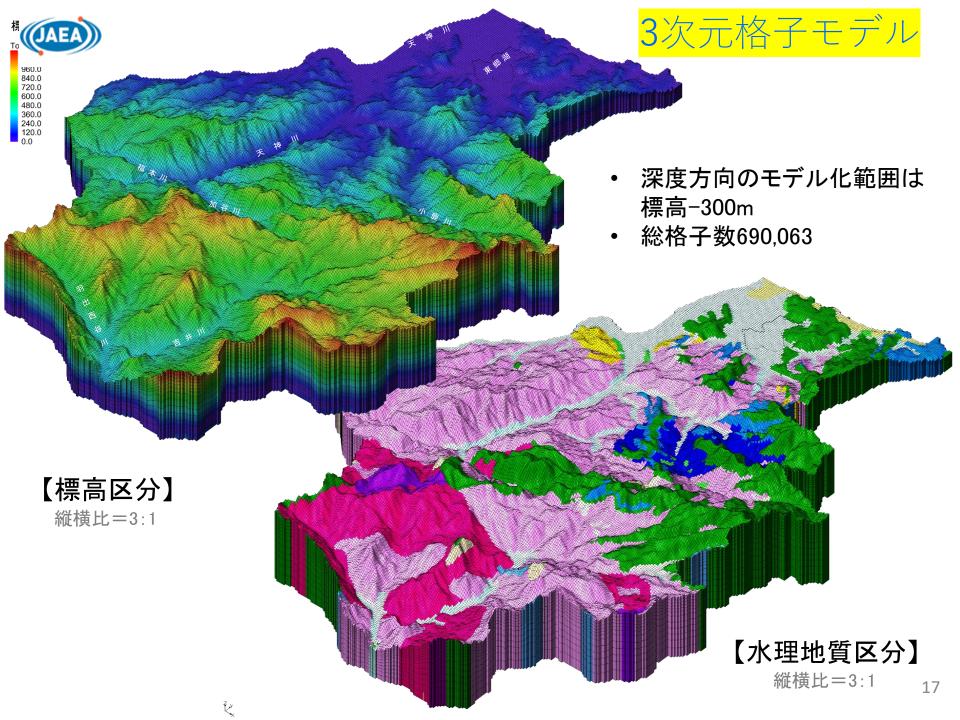

²²⁶Ra


数値シミュレーション

同一のデータソースから目的に応じた複数の解析コードでの利用

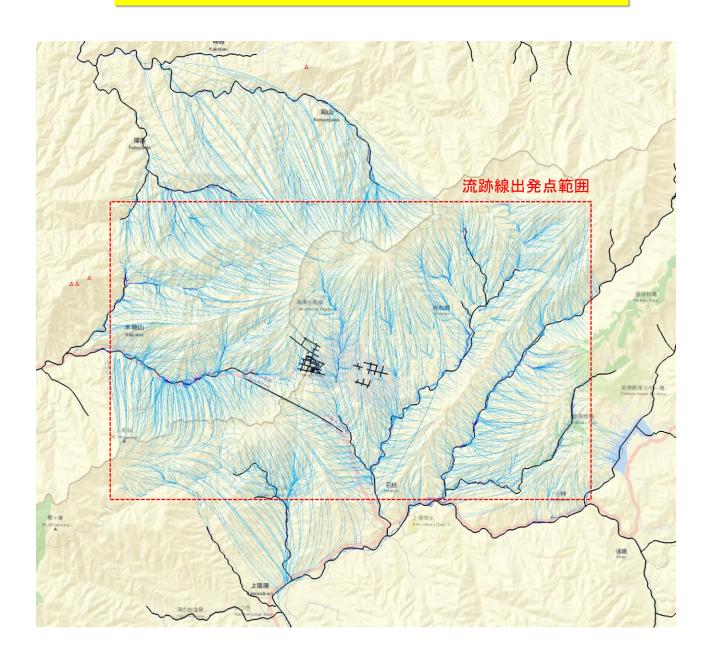
地表水:地下水流動解析


Dtransu3D-EL, TOUGH3, GETFLOWS, MODFLOW, FEFLOWS他

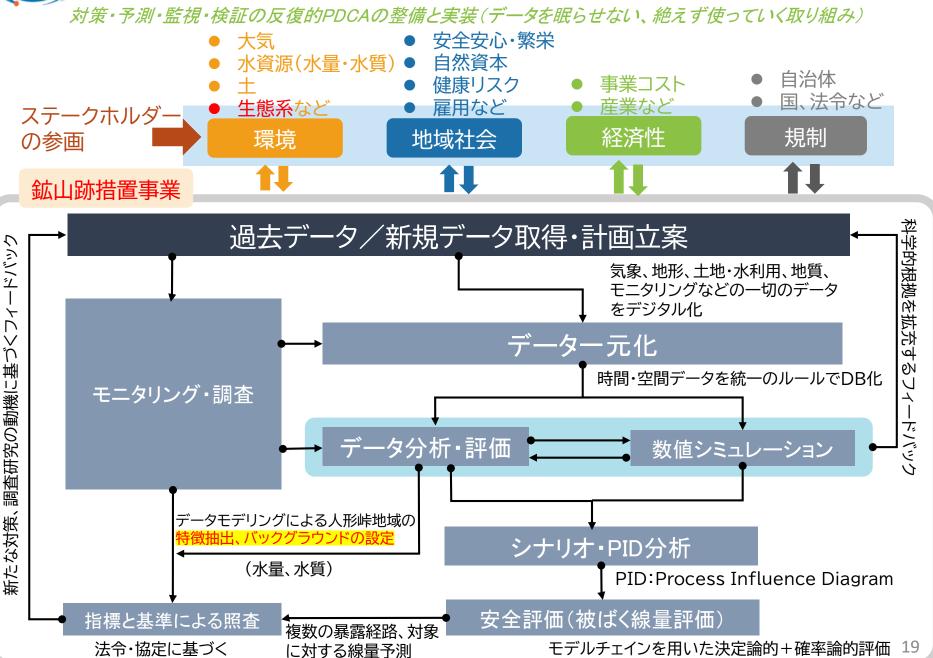


核種移行解析

GoldSim, NORMALYSA他



出典: User's Manual for NORMALYSA v.2.1(2018)



解析結果:人形峠周辺の流跡線

閉山措置における事業フレームワーク

水生生物調査

新しい環境データの取得

これまでの環境モニタリングは、水質、土壌、空間線量、農作物など、人への直接・間接的な影響に関する調査を行って参りましたが、生態系への影響把握としての調査は行ってきておりませんでした。

生態系に関する調査として、水質に敏感な生物である水生昆虫などの水生生物調査を平成30年より行ってきております。

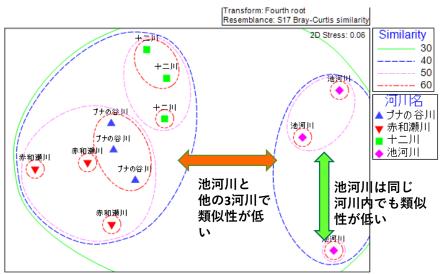
水生生物 調査地点

赤和瀬川上流

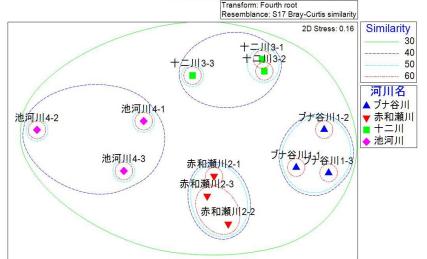
標高:714m 合流点から の距離:4.3km

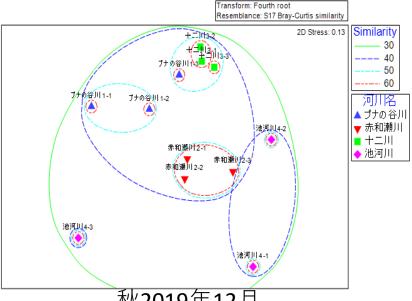
- ! 人形峠環境技術センター
- モニタリング地点
- 〇 対照地点
 - 調査対象河川の流域

地図の出典: 国土地理院ウェブサイト http://maps.gsi.go.jp



水生昆虫確認種




水生生物調査解析結果の一例

春2019年5月

夏2020年8月

秋2019年12月

Bray-Curtis指数の 非計量的多次元尺度構成法 (nMDS) 解析結果

※地点間の水生生物の分布状況が似て いるかどうかを比較するための解析

まとめ

人形峠環境技術センターとで鉱山閉山措置にむけて今後、取り組んでい く安全評価シナリオ解析の方向性について説明しました。

- ●水(地下水、河川水)を輸送媒体とした広域の数値シミュレーションで流動を予測する。人形峠流域600km²を対象にした広域の流動解析とする。物質移行解析や放射線核種移行解析を合わせて実施し、懸念物質の拡散を予測する。
- ●安全評価のためには、バックグラウンドデータの評価が重要であり、これまで蓄積したデータや一般公開データのデーター元化する作業を進めている。

【今後の計画】

- ○移動経路、利水状況を整理して、PIDを作成し、シナリオ解析を実施する。
- ○環境監視体制を組み入れた閉山措置の事業フレームワークを構築を目 指す。