

鉱委17-06

露天採掘場跡地地下水流動解析及び物質移行解析

(2016.3.22 第17回鉱山跡措置技術委員会 資料)

国立研究開発法人日本原子力研究開発機構 バックエンド研究開発部門 人形峠環境技術センター 環境技術開発課

- 1. 基本的事項
- 2. 地下水流動解析
- 3. 非定常解析
- 4. 対策工の効果
- 5. 物質移行解析(移流分散解析)
- 6. 露天坑水及び地下水の鉄化学反応解析
- 7. まとめ

1. 基本的事項 露天採掘場跡地の現状

〇経緯

- S32~35 坑道掘削によるウラン採鉱
- S52~62 露天採掘によるウラン採鉱
 - → 採掘深度は場所により異なる
- S54~63 露天採掘した鉱石からのヒープリーチング によるウラン回収
 - → 鉱石55,650tから39.5tU回収
 中和処理ののち残渣(以降、捨石と称す)
 を埋設、覆土、植栽

露天採掘場跡地

〇現状

- ・ 規模 約29,600㎡(E-W 約200m, N-S 約150m)
- ・ 旧坑道 排水用暗渠を設置し埋め戻している
- ・たい積物 下位から捨石、表土(露天採掘前の地山である主に堆積岩)、客土(センター外から搬入したマサ土)
- ・ 坑水 暗渠により跡地南部の集水井へ流下、のち鉱さいたい積場へ流送
 水量:約2万m³/年
 - 水質:鉄濃度(19.7mg/L)が法令値(10mg/L)及びセンターの定める排出基準値(1.0mg/L)を超過
 - ⇒ 将来における坑水処理の負荷低減化のため、水量低減化・水質改善が必要

1. 基本的事項 露天坑水の現状

項目	露天採掘場 跡地	見学坑道	】 学坑道 大排水溝		法令值	排 出 基準値
坑水量*1 (m³/年)	18,129 (15.6%)	13,27473,770(11.4%)(63.6%)		10,846 (9.4%)	—	_
²³⁸ U*2	7.03 × 10 ⁻⁴	2.28 × 10 ⁻⁴	1.93 × 10 ⁻⁴	2.24 × 10 ⁻⁴	2.0 × 10 ⁻²	1.1 × 10 ⁻³
(Bq/cm ³)	5.86 × 10 ⁻⁴	2.00 × 10 ⁻⁴	1.19 × 10 ⁻⁴	9.48 × 10 ⁻⁵	(鉱山保安法)	*4
²²⁶ Ra*2	1.73 × 10 ⁻³	1.53 × 10 ⁻⁴	3.23 × 10 ⁻⁴	1.56 × 10 ⁻⁴	2.0×10^{-3}	3.7 × 10 ⁻⁵
(Bq/cm ³)	1.59 × 10 ⁻³	1.06×10^{-4}	2.27×10^{-4}	7.92 × 10 ⁻⁵	(鉱山保安法)	*4
Fe*2	18.7	0.6	5.1	0.7	10 (鉱山保安法)	1.0 (海 百 津)
(IIIg/L)	17.0	0.3	3.1	0.4	(水濁法)	届出值
As*3	0.1090	0.0008	0.0061	0.0047	0.1 (鉱山保安法)	0.02 (海 百 注)
(mg/L)	0.0878	0.0005	0.0051	0.0023	(水濁法)	届出值

*1:平成21年度~25年度の年平均値

*2:四半期毎の分析結果(上⇒最大値 下⇒平均値)平成22年度第4四半期~平成26年度第2四半期:15件 *3:四半期毎の分析結果(上⇒最大値 下⇒平均値)平成23年度第4四半期~平成26年度第2四半期:11件 *4:周辺環境保全等に関する協定書(敷地境界における管理目標値)

Ra、Fe、As の濃度解析(物質移行解析)の必要性

1. 基本的事項

調査・解析フロー

2. 地下水流動解析(飽和•不飽和浸透流解析) 解析領域とモデルの概要

2. 地下水流動解析 同定解析(現状再現解析)

定常解析結果図

定常解析の検証に用いた地下水面図

- ・定常解析結果の地下水面コンターは、観測水位結果から作成した地下水面図とほぼ整合。
- ・観測孔水位と同定水位の差は、No.1孔及びNo.28孔、No.41を除けば±1.5 m 以内に収まった。
- ・年平均坑水量 54.9 m³/日に対し、同定坑水量は 54.0 m³/日となり、誤差1 m³/日未満であった。

3. 非定常解析 非定常解析の課題

3. 非定常解析 タンクモデルの採用

露天地表面に降雨、蒸発散、表面流出を概念化したタンクを設定して地下浸透量を求めた。

4. 対策工の効果(予測解析) 地下水位低下・坑水量低減化対策案

・浸透流解析モデルを用いて、露天坑水量の低減に効果のある工法を検討した
 ・雨水浸透を抑制できる覆土と山側からの地下水流入を遮ることのできる難透水性の遮水壁をモデルに設定して、露天坑水量の予測解析を実施

対策モデル	対策工の性能	予測結果 (露天坑水量の変化)	
覆土	覆土(浸透率20%)	54.0m ³ /日 → 44.4m ³ /日 約2割	減少
(全面)	覆土(浸透率0%)	54.0m ³ /日 → 17.2m ³ /日 約7割	減少
覆土 (西側のみ)	覆土(浸透率20%)	54.0m ³ /日 → 48.5m ³ /日 約1割	減少
遮水壁	透水係数10 ⁻⁷ (m/s) 深度10~15m(弱風化花崗岩まで)	54.0m³/日 → 52.6m³/日 約3%	減少
覆土+遮水壁	覆土(浸透率20%)+遮水壁	54.0m ³ /日 → 43.0m ³ /日 約2割	減少
	覆土(浸透率0%)+遮水壁	54.0m ³ /日 → 16.0m ³ /日 約7割	減少

5. 物質移行解析(移流分散解析) 解析方針

5. 物質移行解析(移流分散解析)

■移流・分散の基礎方程式

記号	物性	単位	関連項目			
R	遅延係数	-	吸脱着現象による地下水流速に対する 遅れ現象を表す	※今回の解析では、Raの吸着の可能性は 小さいと判断 → R=1 とした		
θ	体積含水率	_	浸透流解析から得られる体積含水率			
ρ	流体密度	M/L ³				
D_{ij}	分散テンソル	L²/T	分散長 (α_L, α_T) 、分子拡散係数 (α_m) 、 屈曲率(て)、実測流の絶対値 (V) クロネッカのデルタ (δ_{ij})	$D_{ij} = \alpha_T \ V\ \delta_{ij} + (\alpha_L - \alpha_T)\frac{V_iV_j}{\ V\ } + \alpha_m \tau \delta_{ij}$ $\frac{\partial}{\partial H} \frac{\partial}{\partial H} \frac{\partial}{\partial$		
V_i	実測流	L/T	浸透流解析から得られる実測流	ダルシー流速、有効間隙率		
С	濃度	L ³ /L ³	他に[M/L ³]			
	減衰項	-	半減期がわかっている物質で扱う 減衰定数: λ	Ra:半減期 1,600 年 減衰項: θρλ <i>c</i>		
	源泉項	-	物性の生成(+)、消滅(-)	※本解析では"0"とした		

(引用)日本地下水学会編「地下水シミュレーション」技法堂出版

5. 物質移行解析(移流分散解析) 物性值

●分散長(λ):モデルスケール500 mから、縦分散長を50 m、横分散長を5 mとした。

●分子拡散係数(αm):文献値(Spitz, K. and J. Moreno(1996): Practical Guide to Groundwater and Solute Transport Modeling. John Wiley&Sons, Inc) より、Ra²⁺のαm=0.028 m²/年であるが、屈曲率0.5 を乗じた実効拡散 係数が1.4E-02 m²/年となり、水の実効拡散係数1.6E-02 m²/年とほぼ等しいことから、「水(0.032 m²/年)」と等し いとした → 8.7E-05 m²/日

●屈曲率(τ):参考文献値 0.3~0.64 の平均 0.5 を採用

●減衰定数(λ): $\lambda = In2/T_{half} = 0.69314/(1600*365) = 1.18E-06$ (T_{half} : Raの半減期(日) 1600年*365)

교사	透水係数	縱分散長	横分散長	分子拡散係数	屈曲率	減衰定数
陸方	m/日	m	m	m2/日	(τ)	(λ)
表土	3.11E-01	50	5	8. 7E–05	0.5	1. 18E-06
捨石	5.74E-01	50	5	8. 7E–05	0.5	1. 18E–06
堆積岩	1.20E-01	50	5	8. 7E–05	0.5	1. 18E–06
強風化花崗岩	7.64E-02	50	5	8. 7E–05	0.5	1. 18E–06
弱風化花崗岩	1.29E-02	50	5	8. 7E–05	0.5	1. 18E–06
新鮮花崗岩	3.23E-03	50	5	8. 7E–05	0.5	1. 18E–06
坑道	8.20E-01	50	5	8. 7E–05	0.5	1. 18E–06

5. 物質移行解析(移流分散解析) Raの吸着特性(1)

- 溶液と岩石粒子を接触させ、吸着と脱離がつりあう平衡状態になったときの最も単純な関係は次の式で表される。
 Ws=Kd・C
 Ws=Kd・C
 Ws=Kd・C
 Ws=Kd・C
 Ws=Kd・C
 C:溶液濃度(kg/m³)
- ・分配係数(Kd)の値が大きければ、"より吸着する"ことを示す。
 ・分配係数測定試験(バッチ式)の結果 → 既往成果あり

分配係数測定試験は、露天採掘場跡地の特異性(酸化や還元雰囲気)を考慮した実験ではないこと。また 試料を粉砕して溶液と接触する表面積を大きくしていることなど、地層中の吸着プロセスを考慮していな いことから、今回の解析では吸着の可能性は非常に小さい=物質移行の遅れはない(安全側)とした。

5. 物質移行解析(移流分散解析) Raの吸着特性(2)

- ①比表面積が大きいほど、吸着する傾向がある^{※1)}。露天捨石の分配係数測定試験に供した試料は乳 鉢で粉砕しているため、実際の捨石の比表面積は試験値より小さいと考えることが出来る。よって、 捨石の分配係数は試験値0.4[m³/kg]より小さい(=固相へ吸着しにくい)と考える。
- ②CEC(陽イオン交換容量)が大きいほど吸着する傾向がある^{※1)}。
- (CEC:陽イオンを引き付け吸着し保持することのできる容量)
- ③RaのpH-Eh図より、Raはどのような状態でも、ほとんど2価の陽イオンとして存在する^{※2)}。
- Raの分配係数は、pHの変化に伴う変動がほとんど認められない^{※3)}ことから、露天の上流と下流域の pHの変化に伴う分配係数変化は考慮しないで良いと考える。

●(ローム(1)),■(ローム(Ⅱ)),●(赤色土),▲(黄色土),▼(砂(1)),▲(砂(Ⅱ)),▲(凝灰岩); 湧水・模擬地下水

【参考文献】

- ※1:石井他、浅地中環境下におけるウラン系列各種の分配係数測定(I)、原子カバックエンド研究、Vol.8、No.1、pp.55-63
- ※2: 竹野直人、Eh-pH図アトラス 熱力学データベースの相互比較、地質調査総合センター研究資料集No.419、2005年5月
- ※3:坂本他、浅地中環境下におけるウラン系列各種の分配係数測定(Ⅱ)-分配係数のpH依存性-、原子カバックエンド研究、Vol.8、 No.1、pp.65-76

5. 物質移行解析(移流分散解析) 計算条件及びRa濃度設定条件

■計算条件

→一百久川	浸透流解析	定常
前昇木件	物質移行解析	非定常
	Ra濃度発生	定常発生
Ra濃度設定	濃度設定手法	捨石全節点に相対濃度0~1を設定 相対濃度は、H25年度報告書のRa濃度分布図の捨石分布範囲をモデルに反映

■現状再現解析結果

5. 物質移行解析(移流分散解析) Ra濃度の再現結果

・露天坑水のRa濃度再現解析の結果は、実測値より若干低い値を示した。

5. 物質移行解析(移流分散解析) Ra濃度の再現結果

■実測値と解析値の誤差要因

- ・設定した物性値が異なる可能性がある。
- ・露天採掘場跡地内のRaの初期濃度分布は、モニタリング孔の点のデータから推測した ものであるため、実際には、さらに高い濃度を示す箇所が露天採掘場跡地内に存在す る可能性がある。
- ・解析計算条件におけるRa濃度発生は、捨石のみを発生源としたが、実際は露天採掘場 跡地周辺のウラン鉱床から流入するRa濃度値(バックグラウンド値)が有意に高い可 能性が考えられる。
- ・露天採掘場跡地周辺からのバックグラウンド値をシミュレーションで再現させるためには、現在のモデルより広範囲のモデル作成して解析する必要がある。

以上の誤差要因を考慮すると、

今回の移流分散解析手法を用いたRa濃度の再現解析は、現状に近い濃度を再現できたと 考えることが出来る。

5. 物質移行解析(移流分散解析) バックグラウンドの問題点

・露天採掘場跡上流域にもウラン鉱床の分布する。
 ・露天採掘場跡地の上流側から流入する地下水には、Raが含まれる。

平成16年8月16日~10月6日人形峠周辺(広域)水文地質調査結果を引用

6. 露天坑水及び地下水の鉄化学反応解析 (PHREEQC解析)

6. 露天採掘場跡地内の地下水の特徴 酸化・還元雰囲気

酸化還元電位(ORP)観測の結果、捨石分布範囲の場外と西側でORP値がプラス(+)、捨石 分布範囲の東側でORP値がマイナス(-)を示し、その境界部はプラス・マイナスの 両値を示した。

酸化雰囲気 : 主成分濃度が低い、S-Fe 濃度は 1 mg/L以下 還元雰囲気 : 主成分濃度が高い、S-Fe 濃度は10 mg/L以上

※S-Fe 濃度10 mg/L 以上を示す地点は、地下水が還元雰囲気に あり、陽イオンはNa+K 型、陰イオンはSO₄²⁻ やHCO₃⁻ が多い

6. 露天採掘場跡地の地下水の特徴

6. 露天採掘場跡地の地下水の特徴 露天捨石(ヒープリーチング残渣)

幼女に沃加

ヒープリーチング

内穷

- - -1±	10T		索王幼石
充填	鉱石を浸出槽に充填	-	
浸出	ウランを鉱石から希硫酸浸出(選鉱)	希硫酸 (H ₂ S0 ₄)	$H_2SO_4 \longrightarrow \bigcup \square \amalg X$
水洗	希硫酸浸出した鉱石(残渣)を洗浄	<mark>洗浄水</mark> (H ₂ 0)	NaOH Ca (0H)。→→ (中和)
中和	残渣を苛性ソーダで中和 pHを確認して消石灰を添加	NaOH 水 Ca(OH)₂ 水	
搬出	中和残渣(露天捨石)を露天採掘場跡地へ 埋戻し	-	露天捨石 →→→ Na、Ca、SO ₄ の反応物を含むと推定

各工程の反応水の濃度と反応日数

	浸出工程		洗浄工程	中和工程					
時期	日数	希研	腋濃度	日数	日数	苛性ソ	ーダ濃度	消石	顶濃度
	(日)	(g/L)	(mol/L)	(日)	(日)	(g/L)	(mol/L)	(g/L)	(mol/L)
初期 (S54-56)	7	80	0.816	15	2	20	0. 5	1	0. 013
中期 (S57–59)	6	40	0. 408	6	1	20	0. 5	3	0. 040
後期 (S60-62)	5	40	0. 408	8	1.5	20	0. 5	1	0. 013

引用) ヒープリーチング操業試験報告書総まとめ、H26年1月

- 既存文献等から推定した鉄化合物と露天採掘場跡地内における代表的な地下水との反応解析を実施
- pH、D0、Fe²⁺、S0₄²⁻の水質に着目して、<u>鉄化合物やその他の化合物及び主要反</u> <u>応系の特定</u>

解析・検討項目	予察検討結果
Fe²⁺、SO ₄ ²⁻の供給源は、 <mark>黄鉄鉱 (FeS</mark> ₂)	黄鉄鉱の溶解に伴いpHが低下(酸性化)するため、それを抑制する他の 化合物が必要
	30年もの間、残留していることは考えにくい
pHの中和として添加した消石灰・苛性ソーダを検討	消石灰は方解石 (CaCO ₃) に変化しやすいことから、 <mark>方解石</mark> の関与を推 定
	Ca ²⁺ 、SO ₄ ²⁻ の濃度が高いことから、 <mark>石青</mark> の関与も推定
Fe ²⁺ が優位に残存するための環境を検討	酸素の供給が制限される環境下であることが必要 24

(2015) 6. ステップ0 解析(露天捨石と地下水の反応解析)

■露天採掘跡地に存在する地下水

- モデル地下水A : 捨石に接触していない、溶存イオンの少ない地下水
- モデル地下水B : 深部(花崗岩)の、溶存イオンの多い地下水
- モデル地下水C : 捨石中の還元雰囲気ゾーンの、硫酸イオンと2価鉄イオンの多い地下水

■捨石中の鉄鉱物と存在量

反応鉱物		鉱物選定根拠 割合		モル濃度 (mol/L)		反応式		
	黄鉄鉱 FeS2	ヒープリーチングの鉱石には黄鉄鉱換算で約1% の量の硫黄が含まれた(ヒープリーチング操業試 験報告書 総まとめ)		0. 6	反	$FeS_2 + 7/20_2(aq) + H_20 \Leftrightarrow Fe^{2+}+2H^++2S0_4^{2-}$		
鉄鉱物	磁鉄鉱 Fe ₃ O ₄	蛍光X線分析の3~5%の鉄の大部分は褐鉄鉱と 推定(H23, 24調査報告書)		2.4	心速度式	$Fe_2O_4 + 8H^+ \Leftrightarrow Fe^{2+} + 2Fe^{3+} + 4H_2O$		
	赤鉄鉱 Fe ₂ O ₃	磁選鉄鉱物の平均値(H23, 24調査報告書)		0. 15	л	$Fe_2O_3 + 6H^+ \Leftrightarrow 2Fe^{3+} + 3H_2O$		
	針鉄鉱 FeO(OH)	不明(推定値) 0		0. 1	躚	$Fe^{3+} + 2H_20 \iff Fe0(0H) + 3H^+$		
山和	方解石 CaCO₃	消石灰が方解石に変化して中和に関与したと推定 Ca (OH) ₂ + CO ₂ → CaCO ₃ + H ₂ O		0. 005	時平衡	中和反応 CaCO ₃ + H⁺ →Ca ²⁺ + HCO ₃ ⁻		
- Т. чи	石膏 CaSO4	濃度の高いCa ²⁺ と SO4 ²⁻ から石膏の析出を推定		0. 005	式	中和反応により石膏が析出 Ca ²⁺ + SO4 ²⁻ → CaSO4・2H ₂ O		

- ・露天地下水中に2価鉄イオンと硫酸イオンを溶出する鉄鉱物は黄鉄鉱(FeS₂)しかない
- ・露天坑水中の鉄と硫酸イオンの全量が「黄鉄鉱」を発生源とした場合の黄鉄鉱の量は約27 t (捨石全量に対して0.6%) である。捨石中に1%含有すれば0Kである。
- ・鉱石には黄鉄鉱換算で1%前後の硫黄(S)が含まれていた(「ヒープリーチング操業試験報告書総まとめ」より)

黄鉄鉱を主要な鉄鉱物として化学反応解析を実施

(MAR) 6. ステップ0 解析(露天捨石と地下水の反応解析) 解析概要

◎黄鉄鉱を主要な鉄鉱物として化学反応解析を実施

解析結果

解析	ケース	рH	DO	Fe ²⁺	Ca ²⁺	\$04 ²⁻	HCO ₃ ⁻	目標濃度
モデル	鉱物種	5.8	0.04~	0.01~	0.1~	0.1~	0.3~	捨石東部 (還元雰囲気) におけ
地下水	到41971至	~6.8	0.1 (mmol/L)	1.2 (mmol/L)	5.2 (mmol/L)	16 (mmol/L)	2.6 (mmol/L)	る地下水水質の測定濃度(H25)
	1	2.5	0.0	0.2	0.04	1.7	8.E-6	ー 年水貝測定結未より)
	2	2.5	0.0	4.E-5	0.04	1.7	7.E-6	(几例)
А	3	7.3	0.0	0.0002	3.5	1.5	3.1	
	4	7.3	0.0	0.0002	3.5	1.5	3.1	■:目標濃度と整合
	5	7.1	0.0	0.0002	8.4	5.0	2.8	■:日 倧 涙度と慨ね 空 合 反応に伴う 濃度の 変化 傾向
	1	2.7	0.0	0.2	0.25	2.5	0.0002	
	2	2.6	0.0	2.E-5	0.25	2.5	0.0002	:目標値と整合しない
В	3	7.2	0.0	0.001	3.7	2.3	3.8	 ※数値け約30年後のモル濃度
	4	7.2	0.0	0.001	3.7	2.3	3.8	※ 数値は前30年後の Cが濃度 を示す(単位:mmol/L)
	5	7.0	0.0	0.0004	8.7	5.8	3.4	
	1	2.6	0.0	0.2	3.0	8.6	0.0003	
	2	2.6	0.0	0.001	3.0	8.6	0.0003	
с	3	7.0	0.0	0.001	7.5	8.3	5.0	
	4	7.0	0.0	0.001	7.5	8.3	5.0	
	5	6.9	0.0	0.001	12.3	11.4	4.5	

●高いSO₄²⁻とFe²⁺濃度は、捨石内に存在する黄鉄鉱が供給源の1つであると考えられる。

●鉱物種1,2(鉄鉱物のみ)では、pHが酸性になり目標濃度と整合しない

●黄鉄鉱と方解石を含有する鉱物組合せで、還元雰囲気におけるFe²⁺、SO₄²⁻の増加とpH 7程度 で安定すると考えられる。

JAEA

6. ステップ1 解析(ヒープリーチング反応解析)

■ヒープリーチング処理水の濃度と反応日数

各工程の処理水濃度や処理日数はヒープリーチング操業試験報告書を根拠にした。

	浸出工程		洗浄工程	中和工程					
時期	日数	希研	靛酸濃度	日数	日数	苛性ソ	ーダ濃度	消石	灰濃度
P47 247	(日)	(g/L)	(mol/L)	(日)	(日)	(g/L)	(mol/L)	(g/L)	(mol/L)
初期 (S54-56)	7	80	0. 816	15	2	20	0.5	1	0.013
中期 (S57-59)	6	40	0. 408	6	1	20	0. 5	3	0. 040
後期 (S60-62)	5	40	0. 408	8	1.5	20	0.5	1	0.013

*洗浄は河川水を用いているが根拠不足のため、モデル地下水Aの水質とした。

■鉱石中の鉄鉱物と存在量

鉄鉱物の存在量はステップ0の捨石の存在量を根拠とした。

鉱物種	モル濃度 (mol/L)
黄鉄鉱 FeS ₂	0.6
針鉄鉱 FeO (OH)	2.4
磁鉄鉱 Fe ₃ O ₄	0.15
赤鉄鉱 Fe ₂ O ₃	0.1

- ⇒ヒープリーチング処理で選定した鉄鉱物が 残存するか?
- ⇒黄鉄鉱を主要鉱物として、針鉄鉱の存在量 を変化させた化学反応解析を実施

6. ステップ1解析(ヒープリーチング反応解析)

解析結果

◎鉄鉱物の溶出を確認

鉱物	鉄鉱物(モル濃度:mol/L)			
ケース	針鉄鉱	黄鉄鉱	磁鉄鉱	赤鉄鉱
1	2.4	0.6	0.15	0.1
2	2.4			
3	4.8	0.6		
4	2.4	0.6		
5	1.2	0.6		

t−プリーチング 処理水	浸出工程	洗浄工程	中和工程	
	硫酸 (mol/L)	-	苛性ソーダ (mol/L)	消石灰 (mol/L)
初期(S54~56年)	0. 816	モデル - 地下水A	0.5	0.013
中期(S57~59年)	0. 408		0.5	0. 040
後期(S60~62年)	0. 408		0.5	0.013

解析条件 処理水は各工程で瞬時に切り替えた。 反応の初期状態は十分な量の溶存酸素を与え、 反応過程では閉鎖系とした。 黄鉄鉱、磁鉄鉱、赤鉄鉱の反応は、速度論を考慮した。 針鉄鉱の反応は瞬時平衡とした。 処理水の流動は考慮しない。

■解析結果

- ・全てのケースで針鉄鉱以外の 鉄鉱物は、溶出しなかった。
- ・針鉄鉱は、浸出工程の硫酸量 に比例して減少した。

6. 露天坑水及び地下水の鉄化学反応解析 (PHREEQC解析) まとめ

- ■ステップ0(露天モデル地下水と捨石の反応解析)
 - ・露天坑水のや地下水の高いSO₄²⁻とFe²⁺濃度は、捨石内に存在する黄鉄鉱が供給源の1つであると推定された。
 - ・現地のpHが6-7程度で安定しているのは、捨石に混合された消石灰を起源とした方解石 や石膏の存在によるものと推定された。
- ■ステップ1(ヒープリーチング処理水と鉄鉱物の反応解析)
 - ・ Fe^{2+} 、 SO_4^{2-} の供給源である黄鉄鉱は残存することがわかった。
 - ・針鉄鉱のみが、浸出工程の硫酸量に比例して減少する。

■今後の予定

①露天採掘場跡地内の地下水と 鉄鉱物等との反応の1次元解析

②ヒープリーチング工程における 鉄鉱物の反応の1次元解析

7. まとめ

- ■浸透流解析
- ・露天採掘場跡地から発生する坑水量を定常・非定常解析で再現することができた。
 ■移流・分散解析(物質移行解析)
 - ・物性値や露天周辺から流入するRaのバックグランドなどの問題が残るが、露天坑水中の 現状のRa濃度をほぼ再現できた。
- ■化学反応解析 (PHREEQC)
 - ・ステップ0とステップ1の解析を行い、 Fe²⁺、SO₄²⁻の供給源を「黄鉄鉱」に絞り込む ことができた。
 - ・露天地下水や坑水のpHをほぼ中性にするには、「方解石」と「石膏」の存在を考慮した反応でよいことを確認した。

■今後の取組み

- ・移流・分散モデルを用いたFe、As、Uの濃度再現解析と予測解析を行う。
- ・露天採掘場跡地の水質環境を模擬したモデルを用いて化学反応解析を行い、露天坑水の鉄濃度(発生メカニズム)を再現して、今後の濃度予測解析を行う。
- ・露天坑水量や水質の予測解析成果は、逐次、露天坑水の個別処理や人形峠鉱山全体の 坑水処理システムを構築するための基礎データとする。