

先端 X線分析により原発事故由来の不溶性セシウム粒子の生成・放出過程を解明

1. 発表者:

- 三浦 輝(研究当時:東京大学大学院理学系研究科地球惑星科学専攻 修士課程2年/ 現:電力中央研究所 研究員)
- 栗原 雄一(研究開始時:東京大学大学院理学系研究科地球惑星科学専攻 特任研究員/ 現:日本原子力研究開発機構人形峠環境技術センター 任期付研究員)
- 山本 政儀(研究当時:金沢大学環日本海域環境研究センター 教授/

現:金沢大学理工研究域 特任教授)

- 坂口 綾(筑波大学数理物質系/アイソトープ環境動態研究センター 准教授)
- 関澤 央輝(高輝度光科学研究センター分光・イメージング推進室 主幹研究員)
- 新田 清文(高輝度光科学研究センター分光・イメージング推進室 研究員)
- 桧垣 正吾(東京大学アイソトープ総合センター 助教)
- 津旨 大輔 (電力中央研究所 副研究参事)
- 板井 啓明(東京大学大学院理学系研究科地球惑星科学専攻 准教授)
- 高橋 嘉夫(東京大学大学院理学系研究科地球惑星科学専攻 教授/ 高エネルギー加速器研究機構物質構造科学研究所 フォトンファクトリー 客員教授)
- 2. 発表のポイント:
- ◆ 放射光を用いた先端的な X 線分析により、福島第一原発(FDNPP)事故由来の不溶性セシウム粒子(CsMP(注1))の内部構造・空隙率・元素比を解明した。
- ◆ 過去の研究に比して 5~30 倍の数の CsMP を環境試料から粒子を水に懸濁させて単離す る手法で効率的に回収し先端 X 線分析に供することで、発生源である原子炉内(1号機お よび 2,3 号機)での生成過程や、外部環境への放出過程を解明し、1号機からは球体粒子 と不定形粒子、2 号機からは微小粒子が環境中に放出されたと推定した。
- ◆ 多数の CsMP を調べることで得られた CsMP の発生過程の系統的な理解や環境中での分 布状態は、放射性セシウム(RCs)の環境中での移行挙動予測の基礎情報となる。また CsMP の詳細な組成や物性評価は、今後の我が国の原発の安全な廃炉作業の推進にも貢 献する。

3. 発表概要:

不溶性セシウム粒子 (CsMP) は、FDNPP から放出された RCs を濃集する微粒子であるが、 環境中で採取された数が少ないため、その形成・放出過程、周辺での分布状況、形状や元素組 成の系統的理解は進んでいなかった。また、微粒子であるため分析可能な手法が少なく、その 完全な性状解明は未だ途上にある。東京大学大学院理学系研究科の三浦輝大学院生(研究当時: 修士課程2年)・栗原雄一特任研究員(研究開始時)・高橋嘉夫教授らの研究グループは、効 率的な分離手法(粒子を水に懸濁させて二分割し放射能測定を繰り返す)を開発し、道路粉塵 などの環境試料から67個に及ぶ多数のCsMPを分離することに成功した。さらに同研究グル ープは、放射光施設(SPring-8(注2)および高エネルギー加速器研究機構 フォトンファクト リー(注3))で進める最先端X線分析(マイクロX線CT分析、マイクロビーム蛍光X線分 析)を適用することで、主に 50~400μm の CsMP (Type-B、1 号機由来)の内部構造・空隙 率や微量元素比を明らかにし、その結果を数μmの球状粒子である Type-A の CsMP (2,3 号 機由来;主に2号機とみられる)の結果と比較した。その結果、CsMP (Type-B)には球状と 不定形の2種の形状があり、これらは最大で 50%に及ぶ空隙率を示した。また空隙率を補正し た正味の体積当たりの¹³⁷Cs 放射能は、球状 Type-A 粒子>球状 Type-B 粒子>不定形 Type-B 粒子であり、マイクロビーム蛍光 X 線分析から得られた揮発性元素と非揮発性元素の比も考慮 すると、(i)球状粒子は原子炉内気相中で生成した球形シリカ(SiO₂)粒子が揮発性元素を取 り込んだもの、(ii)不定形粒子は原子炉内の構造物上でメルトが冷えて生成したもの、である と推定された。これらは、CsMP の生成過程、各号機から外部への放出過程、環境中での分布 状態の解明に資するとともに、今後の我が国の原発の安全な廃炉作業の推進にも貢献する。

4. 発表内容:

<研究の背景・先行研究における問題点>

2011年の東日本大震災に伴って起きた FDNPP 事故では、RCs が環境中に大気エアロゾル (注4) として放出され、周辺環境に沈着し、9年が経過した現在でもその影響は続いてい る。こうした RCs が放出された際のその化学状態とその後の環境中での挙動については、水 溶性エアロゾルとして放出されて土壌沈着後に層状ケイ酸塩に強く吸着されることが分かって いる。一方で、一部の RCs は、原子炉内で生成した非晶質シリカ(SiO₂)を主成分とする大 きさ数 µm の球状粒子(Type-A) あるいは 50~400µm 程度の不定形の粒子(Type-B) に高 濃度に含まれる不溶性セシウム粒子(CsMP)として存在することが分かっている。この RCs を含む CsMP は水に難溶性であるため、環境中に長く残留して周辺環境や生体に長期間影響 を与える可能性があるが、その生成過程や周辺環境での分布には不明な点が多い。また、こう した CsMP の物質科学的な研究は、CsMP が原子炉内で生成した環境、ひいては事故時の炉 内の状況を推定する上でも重要な意味を持つ。本研究では、環境試料から CsMP を効率的に 分離する方法を開発し、最先端のX線分析法を適用することで、これまで数個程度のCsMP の分析に関する研究が多かったのに比して、多数の CsMP を分析することで、その CsMP の 形成過程、各号機から外部への放出過程、周辺環境での分布状態、CsMPの形状や RCs 濃度 と内部構造・空隙率との関係、元素比も加味した CsMP の炉内生成環境の推定などを行い、 CsMP の実態解明に大きく貢献した。

<結果と考察>

具体的な結果とその考察は以下の通りである。

- (1) 100 カ所以上の道路粉塵から分離した 67 個の CsMP の分析を行った。過去の研究は数個 ~10 個程度の CsMP を対象にしたものがほとんどで、本研究は CsMP の特徴の系統的な 理解に大きな貢献をしている。
- (2) CsMPの形状とCs同位体比の測定(図1)から、これらは2,3号機(主に2号機)由来で大きさ数 µmの球状のType-Aと、1号機由来で50~400µm 程度のType-B(形状は球状と不定形がある)に分類できることが分かり、Type-Bの方がよりFDNPP 近傍に分布することが分かった。
- (3) 放射光(SPring-8)のビームライン BL37XU を用いたマイクロX線CT分析により、粒子内部の空隙構造や全体に占める空隙部分の体積比(空隙率)を得た。その結果、Type-Bは空隙率が高い(最高 50%程度)特徴を持つことが分かった(図2)。各CsMPのRCsの放射能は、空隙率を補正した各粒子の正味の体積に比例していた。またRCs濃度

(単位体積当たりの放射能)は、Type-A>球状のType-B>不定形のType-Bとなっていた(図3)。これは球状のものは気相中で急速に冷却・固化して形成し、その際揮発性の高いCsが他の元素に比べて多く取り込まれたことを示す。一方、不定形粒子は固相表面で冷却して生成したと考えられ、他の多くの難揮発性元素の共存により希釈され、RCs濃度は低くなったと考えられる。

- (4) 放射光(高エネルギー加速器研究機構 フォトンファクトリー(PF))のビームライン PF BL-4A でのマイクロビーム X 線を用いた蛍光 X 線分析から、Cs と同様に揮発性元素 であるルビジウム(Rb)と難揮発性元素であるストロンチウム(Sr)の Rb/Sr 比は、Cs 濃度と相関し、球状粒子では高く、不定形粒子では低くなることが分かった(図4)。こ れは(3)で示した通り、球状粒子は気相中で生成し Cs をより選択的に取り込む一方、不 定形粒子はメルトが固相表面で冷却した結果、難揮発性元素を多く含むというモデルと整 合的である。
- (5) これらの結果から、水素爆発によって原子炉建屋の屋根が失われた1号機では気相で生成した球状粒子と固相表面で生成したより大きな不定形粒子の両方が外部に放出されたのに対して、屋根が残った2号機では気相中で比較的安定に存在できる微小粒子が、建屋のわずかな隙間(ブローアウトパネルなど)から環境中に放出されたと考えられる(図5)。

<社会的意義・今後の予定>

これらの結果は、実体が不明確な CsMP の生成過程、地理的分布、形状・空隙率、微量元 素組成などについて、多数の CsMP を回収し先端 X 線分析を適用して得た先端性・新規性が 高い成果である。特に形状や空隙率と RCs 濃度や微量元素組成を関係付けることで、2 号機 由来の球状 Type-A、1 号機由来の球状 Type-B および不定形 Type-B の生成過程、各号機の 事故経過との整合性、環境中での分布に多くの知見や示唆を与えた。これらは、今後の RCs の環境中での移行挙動予測において重要な基盤となるとともに、今後数 10 年かけて行われる 廃炉作業を安全に進める上でも、多くの貴重な情報を与える。

<付記>

各研究者の役割は以下の通りです。 研究の計画及び論文の作成:三浦、高橋 道路粉塵試料の採取:山本、坂口 バルク試料のガンマ線測定:山本、坂口、山口 不溶性セシウム粒子の単離及び SEM 分析:三浦、栗原 不溶性セシウム粒子のガンマ線測定:三浦、栗原、桧垣 不溶性セシウム粒子の放射光分析:三浦、栗原、板井、関澤、新田、高橋 解析結果に関する議論:共同研究者全員 研究の監督・指揮:栗原、津旨、高橋 統括:高橋

5. 発表雑誌:

雑誌名:「*Scientific Reports*」(オンライン版7月21日掲載予定) 論文タイトル: Characterization of two types of cesium-bearing microparticles emitted from the Fukushima accident via multiple synchrotron radiation analyses 著者: H. Miura*, Y. Kurihara*, M. Yamamoto, A. Sakaguchi, N. Yamaguchi, O. Sekizawa, K. Nitta, S. Higaki, D. Tsumune, T. Itai, and Y. Takahashi* DOI 番号: 10.1038/s41598-020-68318-2 アブストラクト URL: https://www.nature.com/articles/s41598-020-68318-2

6. 注意事項:

日本時間7月21日(火)午後6時(英国夏時間:7月21日(火)午前10時)以前の公表は 禁じられています。

7. 問い合わせ先:

掲載省略

8. 用語解説:

(注1) CsMP

不溶性セシウム粒子。Radiocesium-bearing microparticle の略。通常 $0.1 \sim 400 \mu m$ 程度の大きさで、マスコミ等ではしばしば「セシウムボール」と呼ばれる。

(注2) SPring-8

兵庫県の播磨科学公園都市にある、世界最高性能の放射光を生み出す、理化学研究所が所有する大型放射光施設で、その利用者支援などは高輝度光科学研究センター(JASRI)が行っている。SPring-8の名前は Super Photon ring-8 GeV に由来する。放射光とは、電子を光とほぼ等しい速度まで加速し、電磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のこと。SPring-8 では、この放射光を用いて、ナノテクノロジー、バイオテクノロジーや産業利用まで幅広い研究を行っている。

(注3) フォトンファクトリー

茨城県のつくば市にある高エネルギー加速器研究機構の放射光施設。X線領域の光まで発生す る放射光施設としては日本で最初に放射光の発生に成功した(1982年)。フォトンファクト リーは「光の工場」という意味で、略して PF とも呼ばれる。PF では数度の大きな改造を行 い、放射光の高輝度化を図りつつ、最新の技術を取り入れた実験装置の開発や実験環境の整備 によって、広い分野の物質・生命科学研究に貢献している。

(注4) 大気エアロゾル

粉塵、浮遊粉塵、大気粉塵などとも呼ばれる。微粒子と気体とが混合した分散系のこと。

9. 添付資料:

図1:134Cs/137Cs比の分析による各粒子を放出した号機の推定。

球形TypeB

7.100 keV 7.131 keV

3D

図2: CsMPの空隙構造の解析例と鉄のK吸収端前後によるマイクロX線CT分析による鉄の3次元分布(3D)の決定。下記URLより、X線CT画像をご覧いただけます。 https://youtu.be/GERm2jXjLuY https://youtu.be/HNHjn3qLbSw

動画: 左は球形 Type-B の CsMP のマイクロ X 線 CT 分析の 3 次元像を示した動画。同様に 右は不定形 Type-B の動画。

不定形Type B

図3:マイクロX線CT分析により得られた球状Type-A、球状Type-B、不定形Type-Bの CsMPの各粒子の体積と¹³⁷Cs放射能の関係。

図4:マイクロビームX線を用いた蛍光X線分析により得られた Rb/Sr 比と¹³⁷Cs 放射能の 関係。

図5:本研究から推定される1号機および2号機からのCsMPの放出プロセス。