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Introduction @

Design targets for Generation IV reactors; Excel in safety and
reliability, sustainable and competitive energy generation,
proliferation resistance and physical protection

In order to achieve cost competitiveness as base load energy source,
commercial SFRs shall cover large output power at least equivalent to
current LWRs.

For the last decades SFRs have been designed, constructed and
operated worldwide to obtain important experiences related to
reliable operation and responses to accident conditions in the
involved countries. Safety research and development works have
been done in the related field such as core fuel performance, molten
fuel and radioactive materials behavior and sodium combustion,
those include phenomenology of severe accident of SFR. Safety design
of GEN-IV SFR can be established on these accumulated technical
basis.
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Introduction @

e In the design and evaluation of SFRs including Monju core disruptive
accidents (CDAs), which are typical severe accidents of SFR, has
already been addressed. And it is important to assure the measures
against severe accidents reflecting the lesson learned from the
TEPCO’s Fukushima Dai-ichi NPS accident.

e [tis crucial for development of GEN-IV SFR that Monju can show good
performance as electric power generator and that effective severe
accident management measures can be established for Monju.

e Based on these experiences and achievements, a practical safety
design criteria (SDC) for GEN-IV SFR shall be established and shared
among involved countries.
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Basic idea for securing safety @

e Basic safety principle is Defence-in-depth (DID) which is same as LWRs. In
addition to conventional three defence lines so-called “prevention of
abnormal occurrence”, “prevention of progression of abnormal
conditions” and “control of accidents within design basis”, “control of
severe plant conditions” shall be required. GEN-IV SFR aims at
“Elimination of the need for offsite emergency response” by enhancing
prevention and mitigation of significant core damage in the severe plant
conditions.
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Basic idea for securing safety @

e |n the TEPCO’s Fukushima Dai-ichi NPS accident, as the result of entire loss
of electric power supply caused by severe earthquake and tsunami, core
cooling function could not be maintained and led to core melit.

e Design measures are required to prevent loss of important safety
functions due to common cause failure. Diversification is the key point to
cope with common cause failure. In addition to diversification of
conventional active safety systems, introduction of passive functions is
effective way.

e Measures against severe accidents shall be built-in rather added-on to
enhance reliability and to ensure implementation by reducing operator
actions. Reactor shutdown and core cooling capabilities based on natural
behavior (passive or inherent features) shall be incorporated in the safety
design.

e DID principle shall be also applied for safety design against sodium
chemical reactions so that the consequences don’t affect core safety.
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Safety design approach of JSFR @

Comprehensive safety approach = Active engineered safety
systems + Natural behavior (inherent or passive feature) to
terminate SA + Accident Management

Proven technology based on the experiences of existing SFRs including
Monju is fundamental.

Passive or inherent reactor shutdown and core cooling capabilities are
incorporated as built-in manner to prevent core damage in the severe
plant conditions.

Mitigation of core damage situations within containment is provided,
which is based on inherent material relocation and cooling.

Natural circulation cooling and containment of degraded core are based
on the technologies already incorporated in Monju

Accident management measures to be established for Monju will be
adequately introduced.
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Safety design approach of JSFR @

Comprehensive safety approach = Active engineered safety systems + Natural behavior
(inherent or passive feature) to terminate SA + Accident Management
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Safety design approach of JSFR OAEA)
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Reactor Shutdown System [RSS] @
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Self Actuated Shutdown System (SASS)

Control rod drive line
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v The de-touch mechanism is used both for
active and passive operations and thus
the safety function can be easily
demonstrated and verified during the
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v Robust core restraint structure ensures
control rod insertion. (rod jamming can be
eliminated from cause of reactor
shutdown system'’s failure)

v' The amount of the negative reactivity
insertion is large enough to shut core
down.
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SASS Test In JOYO @

The component function test in JOYO demonstrated control rod holding
stability by means of curie point electromagnet.
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Decay Heat Removal @

» As long as heat is generated from a reactor core, the heat can be removed by the
natural circulation of coolant even under loss of electric power supply.

» Basic performance of natural circulation cooling has been demonstrated by JOYO etc.
» Confirmation of natural circulation by Monju is important step toward commercialization
of SFR.
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Decay Heat Removal @

» For large scale SFR, enhancement of decay heat removal function is important, while
heat capacity effect of structures is expected for small and medium scale SFRs.

 In order to diversify decay heat removal function, various alternative measures are

available.
* These can be useful to suppress common cause failure.

Example of alternative cooling
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Containment @

« Major challenging factor for containment is mechanical load
from energetics accompanied by large sodium spray fire due

to prompt criticality in Hypothetical Core Disruptive Accidents
(HCDA or CDA).

« Avoiding energetics and retaining damaged core in the
reactor vessel should be pursued. The former can be
achieved by utilizing or enhancing inherent dispersal nature
of core materials and by limiting sodium void reactivity.
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History of CDA work energy evaluation @

e Thanks to R&D outputs on phenomenology of core damage process, excess
conservatism has been able to exclude.
e Nevertheless, for large scale commercialized SFR, mechanical energy release

shall be prevented. e Threshold-type evaluation
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Reactivity worth @

- The amount of reactivity worth is
In the order of

| = fuel (initial)
fuel > cladding > coolant

. clad (removal
- In the course of coolant boiling, ( )

sodium void reactivity is
dominant up to cladding and fuel
melting.

= coolant (voiding)

Comparison of fuel, steel and coolant
void worths
(JSFR condition as an example)

- After that molten fuel and
cladding motion is dominant.

- Strong negative feedback due to
Inherent molten fuel dispersion

- Positive sodium void reactivity
can be defeated by negative fuel
reactivity.
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» Axial fuel dispersion with strong negative reactivity feedback is based on )
natural behavior appears in the course of fuel disruption.

* This fact has been observed in many fuel melt simulation experiments
such as CABRI and TREAT.

An example of SAS4A validation focusing on fuel dispersal with CABRI test data
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Possibility of energetics is dependent on competition between

positive/negative reactivity components.
The energetics can be eliminated provided that appropriate design
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parameters are selected, e.g. sodium void worth limitation.
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» Potential cause of severe energetics is large scale molten fuel compaction
after initial power transient. In order to avoid such situation early fuel
discharge is required.

« Special fuel assembly called FAIDUS is installed for this purpose.

FAIDUS concept
P Fesen t ap p F0OacC h Core meltin [Fuel Assembly with Inner Duct Structure]

Efvrly fuel a ﬁ Wrapper
olt ‘ tube
fuel :
No fuel discPLar e Grid spacer
Avoid large scale Compactive motion
fuel compaction Inner duct
m Support for :
. ! Z
‘v inner duct !

Possibility of large
power excursion

No large

& Cross section £

ower “re-criticality issue”
excursion . ofsub-
: assembly Loy
AIDUS Maodified.EAIDUS

International Workshop on Prevention and Mitigation of Severe Accidents in SFRs, 11th -13th June, 2012 in Tsuruga, JAPAN 20



(OAEA))

* Molten fuel discharge mechanism of FAIDUS has been
observed in an experimental simulation using IGR.
 Power transient of CDA can terminate in shutdown state.
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Cooling of degraded core @

* Retention and cooling of core debris by in-vessel core catcher

« The core debris cooling is achieved by natural circulation of
Na.
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Concluding Remarks (@ )

e In order to realize the safety as GEN-IV SFR, comprehensive approach
shall be taken, which is based on the technology matured through
worldwide experiences of SFRs and incorporates natural behavior to
terminate severe accidents within the containment in the terms of
prevention and mitigation.

e Taking the lesson learned from TEPCO’s Fukushima Dai-ichi NPS
accident and feature of SFR into account, reactor shutdown, core
cooling and containment based on natural behavior under severe
plant conditions are important as well as accident management
measures.

e International effort to find resolution to severe accident issue of SFR
is important.

e Monju will provide valuable basis for Generation IV SFRs by the safety
design featuring severe accidents, establishment of severe accident
management measures and operational experience.
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