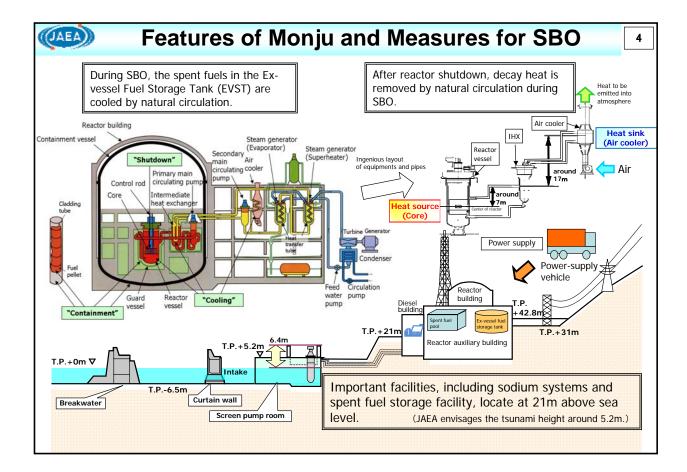
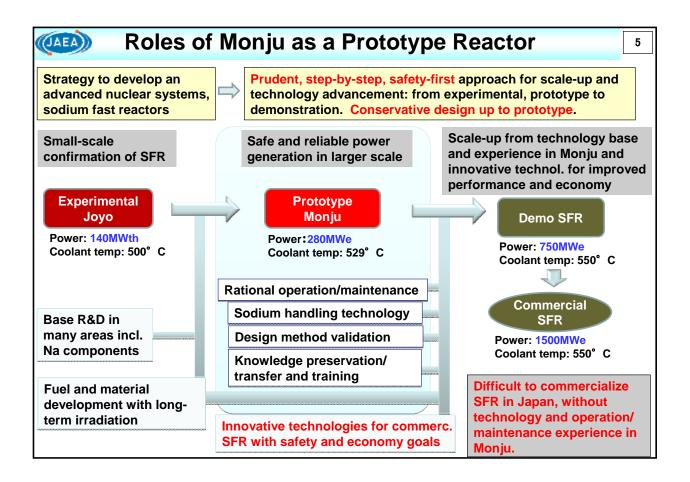
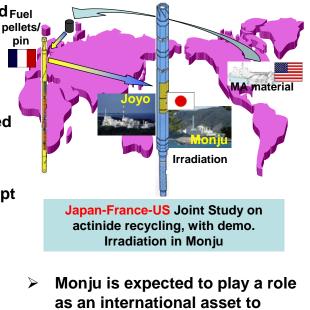

Status and Roles of Monju


GLOBAL 2011 Tsuruga Session; December 16, 2011



Achievement o	of Monju before Restart in 2010
Fechnology base and experience	e in Monju
 experience and R&Ds in various thermo-hydraulics, measurement This technology base is material 	and initial commissioning of Monju are based on Joyo areas: such as safety, fuel and material, components, t and control. ized as a design of Monju, but needs to be further h the plant operation and maintenance.
Activities after the accident	
Safety improvement	 Replacement of thermometers Plant modification to improve safety against sodium leak Feedback from operating experience Review and feedback of the safety research results
Seismic safety evaluation	 Back-check evaluation with a severer design-based earthquake, based on a revised national design guide Additional measures to increase safety margin
Management on operation	Improved operation manuals including emergency operation procedures with severe accident management
Management on maintenance	 Systematic and comprehensive preventive maintenance program, taking advantage of experience in Japanese LWRs Good practice and trouble experience from other NPPs Continued R&Ds on in-service inspection especially for SGs


Achievement of Core Confirmation Test		
SST-1 (Core confirmation test) su	ccessfully conducted	
 Successful operation, after a long l Extremely valuable data with a con 	blank for more than 14 years, with no major troubles applicated fuel composition	
Major achievement		
Startup and operation	 Safe startup and operation of the reactor and cooling system Reactor core with 14-year-old fuel and some new fuel 	
Safe control of reactor	 Reactivity worth of all the 19 control rods Safe control and shutdown of the reactor 	
Inherent self-stability	 Negative reactivity feedback characteristics Inherent self-stability upon power increase 	
Accurate prediction of criticality	Complex reactor core composition with three different types of fuel subassemblies including Am-rich 14-year-old fuel	
New technologies	 Basic physics studies in collaboration with universities Test with an advanced ultrasonic thermometer 	
Reactor physics data	 Valuable reactor physics data with the fuel containing about 1.5% americium 	

Monju as a National and International Asset

- A future of Monju is to be determined Fuel based on a direction of the government energy and nuclear policies which will be established in summer 2012.
- The safety of Monju is to be improved taking the lessons learned from Fukushima.
- The fast reactor option should be kept in Japan having almost no energy resources.
- The roles of Monju as a prototype stays important.
- International joint research programs are continuing, especially with France, US, and other GIF partners.

6

as an international asset to provide research facility and knowledge/technology transfer for future generations.