－2014／191月号－ vol． 152

11月11日，瑞浪市地域交流センター「ときわ」にて「平成26年度東濃地科学センター地層科学研究 情報•意見交換会」を開催しました。

今年度は，地層処分技術に関する研究開発を取り巻く最近の状況，超深地層研究所計画の第2期中期計画期間にお ける研究成果と今後の深地層の研究施設計画，地質環璄の長期安定性に関す る研究の第2期中期計画期間における研究成果と今後の計画などについて紹介 し，全国の大学や研究機関，企業，一般の方々など（約14O名）との間で有意義な意見交換が行われました。

情報•意見交換会の会場

機構改革に係わる今後の超深地層研究所計画の説明では，今後の予定として「深度500mまでの研究坑道を利用して，第3期中期計画期間（平成27～31年度）末までに，必須の課題に関し，最大限の研究成果が得られるように取り組む。」と報告しました。

11月14日，瑞浪市窯業技術研究所にて「第14回超深地層研究所跡利用検討委員会」を開催しました。この委員会は，岐阜県，䛔浪市，土岐市及び両市議会の代表，地域代表の方々，学識経験者，国の方々，原子力機構役職員などで構成さ れており，超深地層研究所における研究が終了した後の施設の利用計画について検討する委員会です。

委員会では，当機構より，瑞浪超深地層研究所の現状をご説明する とともに，研究所の施設活用の取 り組み状況や跡利用計画検討の今後の進め方について，説明しまし た。

委員からは，体験学習や地域機関とのタイアップ，跡利用に関す る意見が出されました。

東濃地科学センター土岐地球年代学研究所（前土岐事務所）に機器分析棟が完成 し，11月14日，小島土岐市副市長をはじめとするご来賓を迎え，開設式が挙行さ れました。

土岐地球年代学研究所では，これからも地層科学研究の一環として，過去の自然現象の活動時期やその変動の傾向•速度を精度良く評価するため，今回導入した最先端の機器分析装置等を活用しつつ，試料の状態や研究の目的に応じた高精度放射年代測定技術の開発を進め，世界トップレベルの地球年代学のCOE（センター・オ ブ・エクセレンス：卓越した研究拠点）を目指すとともに，施設見学会や学校教育支援等を通じた地域の教育•文化•産業の発展にも貢献してまいります。

機器分析棟の銘板除幕

光ルミネッセンス測定装置（OSL）

希ガス質量分析装置

9月8日，2014年日本第四紀学会柏大会（東京大学柏キャンパス）においてネ オテクトニクス研究グループの渡邊隆広任期付研究員ほかが発表した研究成果が日本第四紀学会2014年若手発表賞として表彰されました。

発表者らは，淡水湖沼堆積物の年代測定手法を確立させ，無機化学組成，粒度組成，粘土鉱物組成など様々な手法を組み合わせることにより，チベット高原南部における気候環境が1000年から1500年周期で変動していることを世界で初 めて明らかにしました。本研究成果をネオテクトニクス研究グループで実施して いる年代測定技術開発に応用することにより，地層形成年代の推定と環境変動解析技術を向上させる結果が得られると期待されます。

本研究に使用した淡水湖沼堆積物の断面写真左上は年代測定に使用した堆積物中の植物化石

渡邊任期付研究員

【受賞件名】
渡邊ほか（2014）
チベット高原プマユムツォ湖堆積物の無機化学組成による過去約12，500年間のモンスーン活動の復元，2014年日本第四紀学会柏大会，2014．9．5－9．9．

［瑞浪超深地層邧究所】

（2）深度3OOmボーリング壁の設置作畾究所との共同研究）
3）研究坑道内における傾斜計を用いた岩盤の変位計測，重力計測及び応力計測（東濃地震科学研究所との研究協力）
（4）研究坑道内におけるこニコートリノ捕捉用原子核乾板の保管（名古屋大学への施設貸与）

（5）表層水理定数観測（気象•地下水位•土壌水分の観測）
（6）狭間川における流量観測及び研究所周辺井戸での水位観測
（6）狭間川における流量観測及び研究所周辺井戸での
（8）研究坑道の漥水に含まれるふつ素，ほう素を排水処理設備で除去後に排水
〈ボーリング孔を用いた地下水の観測〉

地下水の水圧•水質観測	地下水の水压観測
- 地表（6孔し） - 深度200m，300m，400m予備ステージ（各1孔） - 深度300m研究アクセス坑道（2孔） （電力中央研究所との共同研究） －深度300mボーリング横坑（換気立坑側4孔し） （電力中央研究所との共同研究） 深度300m研究アクセス坑道（1孔孔） （産業技術総合研究所との共同研究） 深度500m研究アクセス北坑道（9孔し）	－深度200mボーリング横坑 （主立坑側1孔，換気立坑側1孔） 深度300mボーリング横坑 （換気立坑側3孔） －深度300m研究アクセス坑道（1孔） 深度500m研究アクセス南坑道（1 孔）

【正馬様用地】

（1）地表からのボーリング孔（5孔）を用いた地下水の水圧•水質観測 （2）表層水理定数観測（河川流量•気象•地下水位•土壌水分の観測）
瑞浪超深地層研究所では，地下深部を体験できる施設見学会を開催します。
参加をご希望の方は事前申込が必要となりますので，12月1日（月）までに住所，氏名，電話番号を左記の連絡先までお知らせください。また，申込み多数の場合は締切り前に受付を終了させていただくこともあります。なお，当施設見学会は毎月開催する予定です。

【日 時】平成26年12月6日（土）9：30～11：30
【内 容】深度300mステージ
【対 象】小学校4年生以上
※工事現場での安全の碓保のため，小学生の方は4年生以上で保護者同伴でお願いします。また入坑の際は，安全装備しななき服•反射ベスト・ヘルメット・安全長靴•軍手•坑内PHSなどを着用して頂きます。工事中の
現場ですので，狭くて急な階段等もあります。階段の買降等が困難な方など自立歩行に支障のある方他高所，閉所恐怖症の方などは研究坑道に入坑できない場合がありますので，事前にご確認をお願いいたします。

【採取日：週2回】| 測定項目 | 狭間川上流 | 立坑の湧水 | 工事排出水 | 明世小学校前取水口 |
| :---: | :---: | :---: | :---: | :---: |
| 塩化物イオオ濃度
 （单位： mg / L ） | $1.6 \sim 2.0$ | $250 \sim 270$ | $180 \sim 290$ | $16 \sim 70$ |

－塩化物イオンについては，「排水基準」や「環境基準」などの法的な規制はありませんが，濃度の高い水を稲作に長期間使用した場合には，稲の発育に影響が出るという研究事例があります。干葉県農業試験場の論文•

研究所からの排出水等には天然由来の塩化物イオンが含まれています。狭間川の下流域においては，河川水を稻作に利用していることから，上記の「安全基準」にもとづき，明世小前取水口における河川水浱度と して月平均 $300 \mathrm{mg} / \mathrm{L}$ 以下を目安に管理しています。なお，月平均 $300 \mathrm{mg} / \mathrm{L}$ を超える，又は超えると予想される場合には直ちに耕作者の方々にお知らせします。また，これが長期間に及ぶと予想される場合は， $500 \mathrm{mg} / \mathrm{L}$ を超える前までに「専用設備」による処理などの必要な対策を講じます。

【連絡先：東濃地科学センター 総務•共生課 まで】
す。0572－66－2244（代表）tono－ck＠jaea．go．jp（ご意見・ご要望）冨0572－68－7717

共 $\begin{aligned} & \text { tono－ck＠jaea．go．jp（ご意見・ご要望）} \\ & \text { tono－kengaku＠jaea．go．jp（施設見学会）}\end{aligned}$

【採取日：排出水，河川水，湧水（平成 26 年 10 月 2日）】

測定項目	管理目標値	工事排出水	狭間川下流
水素イオン濃度	6．5～8．5	7.0	7.1
浮遊物質量	25 以下	1 末満	2
カドミウム	0.01 以下	0．001 末満	0.001 末満
全シアン	検せされないこと＊7	ND（0．1 末满）※8	ND（0．1 末満）※8
有機燐化合物	倹せをれないこと＊7	ND（0．1 末满）※8	
有機燐		${ }^{-}$	
鉛	0.01 以下	0.005 末満	0.005 末満
六価クロム	0.05 以下	0.04 末満	0.04 末満
砒素	0.01 以下	0.005 末満	0.005 末満
総水銀	0.0005 以下	0.0005 末満	0．0005 末満
アルキル水銀	倹せされないこと＊7		
PCB	倹出をれないこと＊7		
	0．03以下	0.002 末満	0．002 末満
テトラクロロI似	0.01 以下	0.0005 末満	0．0005 末満
四塩化炭素	0.002 以下	0．0002 末満	0．0002 未満
ジクロロメダ	0．02以下	0.002 末満	0．002 末満
1，2－ジ クロ0Iタリ	0.004 以下	0．0004 末満	0．0004 末満
1，1，1－トリフロロIタリ	1 以下	0.0005 末満	0．0005 末満
1，1，2－トリフロロIタリ	0.006 以下	0.0006 末満	0．0006 末満
1，1－ジ クロ0Ifし）	0．02以下	0.002 末満	0．002 末満
シスー1，2－ジ クロロI孔し	0.04 以下	0．004 末満	0．004 末満
1，3－ジ ケロロプロペソ	0．002 以下	0.0002 末満	0．0002 末満
チウラム	0.006 以下	0.0006 末満	0．0006 末満
シマジン	0.003 以下	0.0003 末満	0．0003 未満
チオベンカルブ	0．02以下	0.002 末満	0．002 末満
ベンゼン	0．01以下	0.001 末満	0.001 末満
セレン	0.01 以下	0．002 末満	0．002 末満
硝酸性窒素及び覀硝酸性窒素	10 以下	0.22	0.21
ふつ素	0．8以下	0.4	0． 2
ほう素	1 以下	0.59	0.31
塩化物イオン			
アリモーア，アリモー仏化合物，亜硝酸化合物及び硝酸化合物	－	0.22	

$\begin{gathered} \text { ※1 } \\ \text { 参考値 } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { ※ } 2 \\ \text { 立坑の湧水 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 蔡 } \\ \text { 狭間川上流 } \\ \hline \end{array}$
－	8.8	7.2
		2
0.01 以下	0.001 末満	0．001 末満
恌出れたしいこと＊7	ND（0．1 末満）※8	ND（0．1 末満）\％
0.01 以下	0.005 末満	0．005 末満
0.05 以下	0.04 末満	0.04 末満
0.01 以下	0.005 末満	0．005 末満
0.0005 以下	0.0005 末満	0．0005 末満
軲出れないこと＊7		ND（0．0005 末椯） 1×8
蚛出れてよいこと＊7		

0.03 以下	0．002 末 満	0．002 末満
0.01 以下	0．0005 末満	0．0005 末満
0.002 以下	0.0002 末満	0．0002 末満

0.002 以下	0.002 末満	0.002 末満
0.004 以下	0.0004 末満	0.0004 末満
1 以下	0.0005 末満	0.0005 末満

1 以下	0．0005 末満	0.0005 末満
0.006 以下	0.0006 末満	0.0006 末満
0.02 以下	0．002 末満	0．002 末満

0.02 以下	0.002 末洞	0.002 末荿
0.04 以下	0.004 末満	0.004 末満
0.002 以下	0.0002 末満	0.0002 末満
0.006 以下	0.0006 末満	0.0006 末満

0.00	0.0006 末満	0.
0.003 以下	0.0003 未満	0．0003 末満
0．02以下	0．002 末 満	0．002 末満

【単位：mg／L（水素イオン濃度は pH ）】

