

International Review Workshop on JAEA's URL projects

Current Status of Next Phase Plan

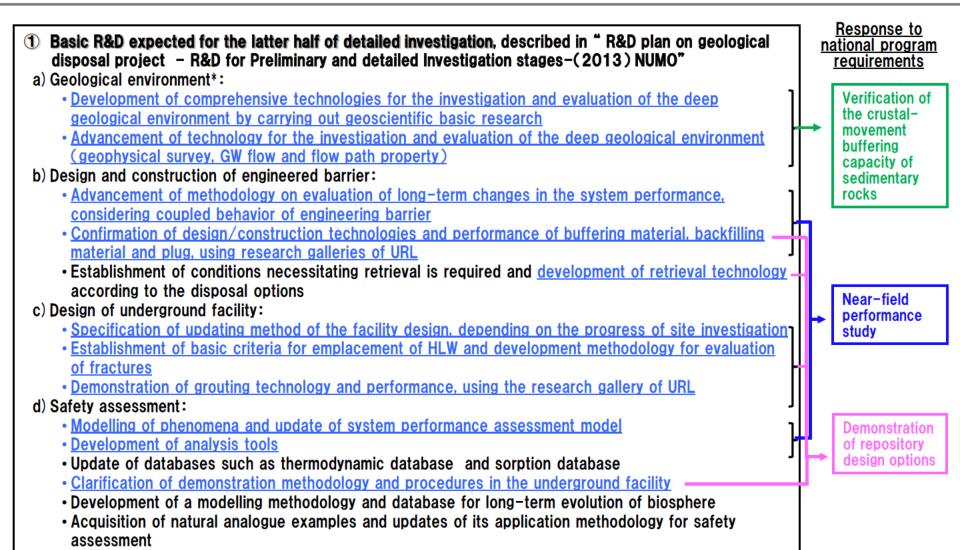
- Horonobe Underground Research Laboratory -

18th June 2014

Kenji TANAI

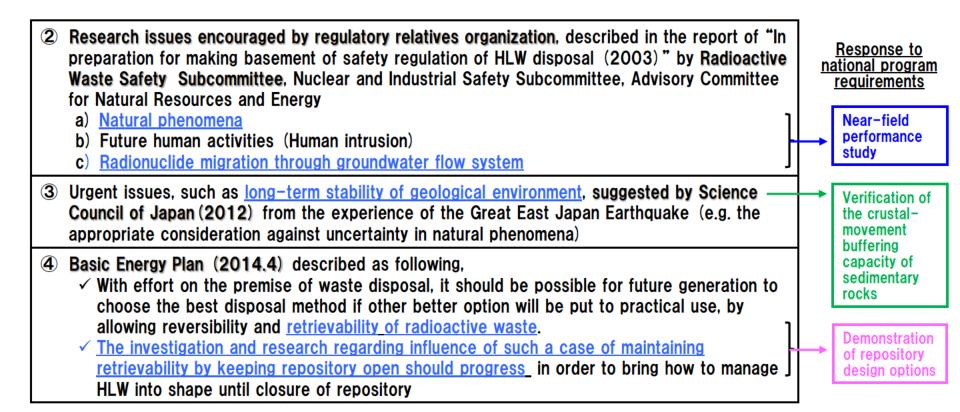
Japan Atomic Energy Agency

Sector of decommissioning and radioactive wastes management
Horonobe Underground Research Center
Horonobe Underground Research Department
Research Planning and Coordinating Group



Contents

- > External needs considered to confirm importance of response to national program requirements
- Summarized response to national program requirements
- ➤ Goal, phenomena and testing for each response to national program requirements
- An illustration of summarized overall design for future R&D in Horonobe URL


External needs considered to confirm importance of response to national program requirements (1/2)

^{*:} Technologies for understanding geological environment should support investigation and evaluation for design and construction of engineering barrier, design of underground facility and safety assessment.

External needs considered to confirm importance of response to national program requirements (2/2)

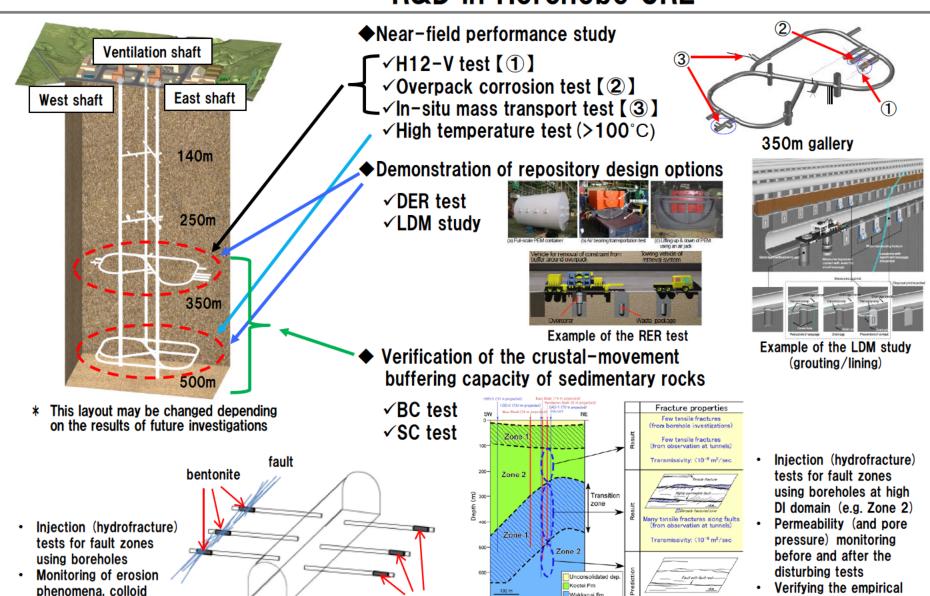
Summarized response to national program requirements

	Conclusions from Horonobe URL studies	Next Plans of Horonobe URL	
A1: Understanding of Initial Geo- environmental conditions (GeC)	Methods to identify appropriate area for URL/repository construction for surface-based investigation phase have been developed & applied. Initial GeC has been well characterized.	- <u>Basically completed;</u> data would be compared after obtaining data post closure of URL	Response to national program
A2: Understanding of short-term Changing/Recov ering Behavior of GeC	 - Methods to design & construct URL/repository using conventional technology have been confirmed. - Methods to identify EdZ & EDZ have been developed & tested. - Material to reduce environmental impact has been developed & applied. 	- THMC experiment with model development (ongoing) - Testing of solute migration models under in-situ conditions - Demonstration experiments of EBS considering disposal options	Near-field performance study Demonstration of repository design options
A3: Understanding of long-term Changing/Recov ering Behavior of GeC	 Methods to close URL/repository have not yet tested. Methods to evaluate long-term evolution of GeC have been constructed and tested. Long-term scenario of changing/recovering behavior useful for PA has been constructed. 	- Development/testing of drift closure & retrieval technology - Development of Long-term monitoring technology for understanding of initial GeC post closure of URL - Testing of buffering/resilient potential in sedimentary rock	Verification of the crustal-movement buffering capacity of sedimentary rocks

Goal, phenomena and testing for each response to national program requirements (1/2)

Response to national program requirements	Goals	Phenomena	Testing	Related Research
Near-field performance study	 ✓ To observe near-field coupled THMC phenomena in-situ and to make a confidence of coupled THMC models ✓ To observe near-field coupled THMC phenomena under high temperature condition ✓ To validate the estimated corrosion rate by laboratory experiments ✓ To obtain "in-situ" mass transport properties related to advection, dispersion, diffusion, sorption, etc. in fractured sedimentary rock ✓ To confirm applicability of safety assessment methodology using these data ✓ To develop of long-term monitoring technology 	 ✓ Near-field coupled THMC phenomena during unsaturated conditions ✓ Corrosion under aerobic and anaerobic conditions ✓ Essential retardation characteristics due to fractured sedimentary rock, Heterogeneity and anisotropy of mass transport characteristics and pathways in fractures and/or pores in sedimentary rock ✓ Damage and disturb processes during facility operation, and recovery process after closure 	 ✓ H12-V test (full-scale EBS test for vertical emplacement EBS design indicated H12 report) ✓ High temperature (>100°C) test ✓ Overpack corrosion test ✓ In-situ mass transport test 	DECOVALEX- THMC, TIMODAZ, LOT project, Mont terri project, Grimsel Test Site, etc.

Goal, phenomena and testing for response to national program requirements (2/2)


Response to national program requirements	Goals	Phenomena	Testing	Useful Reference
Demonstration of repository design options	 ✓ To demonstrate the feasibility of remote emplacement and retrievable technologies of PEM type ✓ To confirm of engineered barrier behaviour until retrievability ✓ To develop the investigation techniques, design criteria and design methods for repository panels, deposition tunnel and deposition hole layout ✓ To develop the grouting technology considering high GW pressure and dissolved gas in sedimentary host rock ✓ To develop the lining technology of disposal pit 	-	✓ DER Test (demonstration of remote emplacement & retrievable technologies) ✓ LDM study (Layout Determining Methodology	ESDRED, RSC programme (POS IVA), etc.
Verification of the crustal- movement buffering capacity of sedimentary rocks	 ✓ To validate of hydro-mechanical buffering capacity of sedimentary rock against fault reactivation ✓ To develop the general evaluation method for the buffering capacity ✓ To clarify erosion phenomena of buffer material by fault reactivation ✓ To understand colloid formation, migration behavior and interaction with nuclide (natural elements or added cold tracer) in various conditions 	 ✓ Temporal increasing of permeability and weakening of fault zone during reactivation ✓ Self-sealing/healing of fault zone after the reactivation ✓ Bentonite eroded due to GW pressure increase by fault reactivation ✓ Colloid formation from buffer material ✓ Advection/dispersion of the colloid 	✓ BC test (Buffering capacity of sedimentary rock) ✓ SC test (Severe condition)	Mont terri, project, Clay Club, Colloid project at the GTS (CFM, FEBEX), etc.

formation and migration

behavior

An illustration of summarized overall design for R&D in Horonobe URL

bentonite

SC test

Zone1: competence factor >4 Zone2: competence factor <4

BC test

relation and implication