

Need for PA in Site Selection

the Swedish Experience

The road to a final repository for spent nuclear fuel

SKB's site selection strategy

- The site that offers the best prospects for achieving longterm safety in practice will be selected
- II. If no decisive difference is found between the sites in terms of their prospects for achieving long-term safety, we select the site that is judged to be the most favourable for accomplishing the final repository project from other aspects

Our sites

Comprehensive investigations have been completed and evaluated at both sites

- SKB's siting	factors —					
3	<	Safety	related s	ite charac	teristics	
		Bedrock composition and structure				
		Future climate				
		Rock me	echanical c	onditions		
Technology for o	vocution	Ground	water flow			
rechnology for ea	kecution	Ground	water com	position		
Flexibility		Retarda	tion			
Technical risks		Biosphere conditions				
Technology development needs		Overall site understanding				
Functionality, operational aspects						
Synergies				JUCIELAI	resources	
Costs				Suppliers,	human resourd	ces
				Public and	d private service	es
	Health and	environn	nent	Communi	cations	
Occupational h		nealth and radiation protection				
	Natural enviro	onment				
	Cultural envir	onment				
	Residential er	vironmer	it			
Management		of natural resources				

Safety assessments (1/2)

- Long-term safety is evaluated by means of safety assessments
- SKB has made a series of safety assessments
- Early and important milestone: KBS-3 report in 1983
 - Basis for application for operational permit for F3 and O3
- The most recent assessment, SR-Can, was published in 2006
 - Main purpose to give the regulatory authorities an opportunity to review the safety assessment methodology, and to make a preliminary evaluation of the safety of a repository in Forsmark and Laxemar
 - Based on site data from initial investigations in Forsmark and Laxemar

SKB

Safety assessments (2/2)

- SR-Can was reviewed by SKI and SSI, supported by three international expert panels
- Main message in review report: "Safety assessment methodology is largely acceptable and complies with regulations"
- We therefore have a developed method for evaluating longterm safety
 - The method has now been used to compare the sites
- SR-Can demonstrated clear differences in Forsmark's favour
 - But it was unclear how representative the initial data were, especially for Laxemar

Comparative analysis of safety related site characteristics

Objectives

- Present analyses of primary importance for site suitability with respect to long term safety.
- Assess whether conclusions on differences in suitability between the sites can be drawn or not based on this set of analyses.
- Assess potential differences in suitability with respect to long term safety for the two sites.
- Limitation in scope
 - Not a formal assessment whether a final repository at the investigated sites fulfils regulations. Such an assessment will be made in SR-site, for the selected site only.
- Size
 - 100-120 pages
- Status
 - First, internal, version produced in June 2009, as a basis for the site select
 - This version is internal to SKB and will NOT be published.
 - Final version will be produced in coordination with SR-Site and will be externally published in connection to SKB's submittal of license applications in 2010.

Comparative analysis of safety related site characteristics

- 1 Introduction
- 2 Achieving the initial state
- 3 Sensitivity to climate evolution
- 4 Changes in fracturing -Thermally induced spalling
- 5 Hydrogeology and transport conditions
- 6 Chemical conditions and their evolution

- 7 Earthquakes
- 8 Mineral resources
- 9 Retardation
- 10 The biosphere
- 11 Expected results of risk calculation
- 12 Confidence in the site descriptive models
- 13 Conclusions

Safety-related site characteristics

The repository is adapted to the rock conditions

- Point of departure for safety evaluation •Respect distance to deformation zones
- Thermal conductivity
- Long fractures

After adaptation there is little or no difference for the following factors

Earthquakes

SKB

- Biosphere conditions
- Site understanding

Safety-related site characteristics Groundwater flow

- Far fewer waterconducting fractures at repository depth in Forsmark
- Lower groundwater flows in Forsmark – on average about 100 times lower

Safety-related site characteristics Groundwater flow

- Far fewer water-conducting fractures in Forsmark
- Operating period
 - Water saturation of buffer and backfill takes long time in Forsmark
- Closed repository temperate period
 - "Equivalent flow" around deposition hole on average 100 times lower in Forsmark
 - "Transport resistance" (F factor) on average 10 times higher in Forsmark
- Closed repository glacial period
 - The groundwater flows can temporarily increase considerably, but the difference between the sites persists
 - The favourable composition (salinity) of the groundwater is less affected in Forsmark

Safety-related site characteristics Groundwater chemistry

- Groundwater salinity (Na, Ca) affects the durability of the buffer
 - More favourable for Forsmark up to the next glaciation and maybe even under glacial conditions
- Possible infiltration of oxygen-containing groundwater under glacial conditions – affects the durability of the canister
 - More favourable in Forsmark due to lower groundwater flows
- Sulphide affects the durability of the canister
 - Small differences between the sites

Safety-related site characteristics Rock mechanical conditions

- Risk of thermal spalling
 - Higher rock stresses in Forsmark increase the risk of thermal spalling in deposition holes, i.e. fracturing when the heat is transmitted from the canister to the rock
 - Causes deterioration in barrier properties near the hole, but the low groundwater flow in Forsmark more than compensates for this disadvantage

Safety-related site characteristics Climatic conditions

- Warmer climate does not affect the differences between the sites
- Permafrost reaches deeper in Forsmark due to the higher thermal conductivity of the rock
 - Judged not to damage buffer or backfill
- Longer period with ice sheet or under water in Forsmark

Safety-related site characteristics Safety evaluation

- We have made a forecast of the outcome of the safety assessment based on the results of SR-Can and updates in input data since SR-Can
 - The safety assessment will be presented as part of the application
- Two scenarios contributed to the calculated risk in SR-Can:
 - Canister failure due to earthquake
 - Canister failure due to accelerated sulphide corrosion after the buffer has been eroded away
- Today buffer erosion and thereby the risk-dominating sulphide corrosion scenario – is judged to remain and is handled in the same way as in SR-Can

Risk curves from SR-Can

Safety-related site characteristics Expected results of risk calculations

- Earthquakes
 - No essential differences between the sites
 - The risk is judged to be equal to or lower than calculated in SR-Can
- Erosion/corrosion scenario
 - The risk that dilute groundwater during glaciation will damage the buffer is lower in Forsmark
 - If the buffer erodes, a few canisters could be damaged in Forsmark after a very long time. Many more canisters could be damaged in Laxemar due to the higher flows
- Much better prospects for achieving a safe final repository in Forsmark

SKR

SKB's siting factors —			
	Safety related	site characteristics	
	Bedrock composition and structure		
	Future climate		
	Rock mechanical	conditions	
Technology for execution	Groundwater flow		
Flovibility	Groundwater co	mposition	
	Retardation		
Technical risks	Biosphere conditions		
Technology development needs	Overall site understanding		
Functionality, operational aspects		Societal resources	
Synergies		Sumpliars human recourses	
Costs		Suppliers, numan resources	
Health and	environment	Public and private services	
	environment	Communications	
Occupational	health and radiation	on protection	
Natural enviro	onment		
Cultural envir	onment		
Residential er	nvironment		
Management	of natural resourc	es	

Design Premises – based on input from PA

- Provide requirements from a long term safety aspect
 - to form the basis for the development of the reference design of the repository
 - to justify that design
- Design premises typically concern
 - specification on what mechanical loads the barriers must withstand
 - restrictions on the composition of barrier materials or acceptance criteria for the various underground excavations
- The justification for these design premises is derived from SKB's most recent safety assessment SR-Can (SKB 2006a) complemented by a few additional analyses.

Design Premises – Underground excavation

- Respect distances to large deformation zones
- Deposition hole acceptance criteria (fractures, inflow, geometry)
- Thermal conditions (T<100 C)
- Allowed materials (e.g. only low pH concrete)

. . .

Technology for execution Flexibility – space

Forsmark

Room for 6,000 canisters if the loss rate of canister positions is less than 23%

Expansion options:

- 1) thermal optimization
- 2) repository in two levels
- 3) expand towards southeast

Laxemar

Room for 6,000 canisters if the loss rate is less than 25%

Expansion options:

- 1) thermal optimization
- 2) repository in two levels
- 3) expand towards west and south

Technology for execution Loss of deposition positions

Forsmark

- Water not a problem
- Uncertainties in rock stresses
 - Can cause spalling in deposition holes
 - Loss of less than 500 positions
- Uncertainties concerning
 frequency of long fractures
 - Could at worst entail a loss rate of 10-25%
 - Reasonable to assume that the actual loss rate will be much lower

Laxemar

- High frequency of waterconducting fractures
 - Extensive grouting need
 - Loss of at least 3,000 positions
- Rock stresses not a problem
- Uncertainties concerning
 frequency of long fractures
 - Could at worst entail a loss rate of 10-25%
 - Reasonable to assume that the actual loss rate will be much lower

Technology for execution Efficiency

- Forsmark entails a much lower risk of loss of deposition positions compared with Laxemar
- Higher thermal conductivity in Forsmark means a 30% smaller repository is needed
- Rock construction in Laxemar is impaired by large water inflows
- Laxemar requires extensive development of grouting methodology and backfilling technique
- In Forsmark there may be a need for additional rock support in tunnels, but this is not deemed to entail any appreciable difficulties
- Forsmark offers lower costs and more robust premises for planning and execution

S	K	B
		•

 SKB's siting factors — 				
5	Safety related site characteristics			
	Bedrock composition and structure			
	Future climate			
	Rock mechani	cal conditions		
Technology for execution	Groundwater	flow		
recimology for execution	Groundwater composition			
Flexibility	Retardation			
Technical risks	Biosphere conditions			
Technology development needs	Overall site understanding			
Functionality, operational aspects		Societal resources		
Synergies				
Costs		Suppliers, numan resources		
Health and	nvironment	Public and private services		
	environment	Communications		
Occupational health and radiation protection				
Natural enviro	onment			
Cultural enviro	onment			
Residential en	vironment			
Management	of natural resou	irces		

 SKB's siting factor 	ors —				
Ũ		Safety related site characteristics			
		Bedrock	on and structure		
	Future o				
	Rock me	onditions			
Technology for execution		Groundwater flow			
		Ground	position		
		Retardation			
Technical risks		Biosphere conditions			
Technology development needs		Overall site understanding			
Functionality, operational aspects			Societal resources		
Synergies				Suppliers, human resources	
Costs				Public and private services	
Health and		environment		Communications	
Occu	Occupational healt		d radiation	protection	
Natur	Natural environment				
Cultu	ral enviro	onment			
Residential er Management		vironment of natural resources			

Summary – Safety and execution

- The rock in Forsmark provides much better conditions for a long-term safe repository and facilitates execution of the project
 - The rock is homogeneous and has few water-conducting fractures at repository depth
 - High thermal conductivity permits a compact repository
- Execution in Forsmark is more robust manageable risks
 - Less need for grouting, simpler backfilling
 - Smaller repository lower costs
 - High rock stresses judged to be manageable
 - High permeability in near-surface rock (<100 m)
 - Sensitive natural environment requires adaption

Summary – Could the assessment change?

- Continued research on bentonite erosion may show that we have been too pessimistic in our assessment of long-term safety
 - The difference between the sites may be greatly reduced and the radiological risk may be lower on both sites
- Possibilities for improved prospects for Laxemar
 - Development of grouting method and backfilling technique
 - Significantly increased repository depth (>700 m), but
 - Requires more investigations
 - Larger underground area needed due to higher temperature
 - Higher technical risks

Role of PA - conclusions

- Key role of detailed safety functions
 - Risk curves themselves not appropriate for site selection but assessment of Safety Function's is a useful means of breaking down the long term safety issues
- Feasiblity in Design and Construction also essential siting factors strongly related to PA
 - , i.e. the main issue is how to meet design premises based on long term safety demands
- Environmental and sociatal factors important but could not be decisive
- Remarks on MAA
 - Concept of multiple siting factors relevant
 - But, most siting factors dependent on each other
 - importance more on/off than gradual.
 - Using MAA points for decision making may be misleading

Final repository for spent nuclear fuel at Forsmark

