

Support for repository design and performance assessment

Next Generation KMS Workshop 3-4 December, 2009 Tokyo

Japan Atomic Energy Agency Hitoshi Makino

- Contents
- Background and approach
 - Fundamentals of repository design
 - Fundamentals of performance assessment
- Application of Knowledge Engineering (KE) technologies / tools to design
- Application of Knowledge Engineering (KE) technologies / tools to Performance Assessment (PA)
- Concluding remarks

Fundamentals of repository design (1)

- It is crucial to develop designs for deep geological repositories that meet all project boundary conditions and can be tailored to specific sites resulting from an open call for volunteers.
- Such design work was, in the past, carried out by expert teams in a rather informal manner.
- As the technical challenges increase and the need for transparency is accepted, a more formal method of developing innovative design solutions is needed.
- In this study, as part of the JAEA Knowledge Management (KM) project, the application of Knowledge Engineering (KE) methodologies to facilitate this process is being investigated.

Fundamentals of repository design (2)

Problems with past, informal methods

Limitations with regard to assumptions and boundary conditions were not clearly documented and are not generally well known.

(JAEA)

Fundamentals of repository design (3)

- To implement the holistic approach, an important starting point is to define the overall constraints (boundary conditions) on the design process.
- A systematic work frame linking development of repository design to assessment of adequacy with respect to a range of different requirements will be needed.
- This requires lateral thinking to develop innovative options that provide the flexibility to be tailored to specific volunteer sites.
- Development of such innovative solutions can be facilitated by the use of KM approaches.

4

Fundamentals of performance assessment (1)

- Performance Assessment (PA) is expected to support the safety case that contributes towards key site-selection decisions and hence must be capable of distinguishing safety-relevant characteristics of different siting or repository design options.
- In terms of identifying the R&D needs and priorities for developing "next generation" PA tools, the challenges can be subdivided into specification of requirements for:
 - Improved system understanding and its representation in conceptual models;
 - Quantitative process models and databases;
 - System models and databases;
 - Verification test cases;
 - > Programme for validation and integrated quality assurance (QA).
- Some parts of PA can be facilitated by the use of KM approaches (e.g. lateral thinking to develop novel assessment models, QA).

Fundamentals of performance assessment (2)

Major developments needed for PA at the stages of siting and repository concept development in Japan are:

- More realistic evaluation of post-closure safety;
- Dealing with a range of repository concepts and a variety of volunteer sites;
- Identification and quantification of key differences between concepts and sites;
- Development of presentation formats to make assessment processes and results understandable to a wider audience.

"Repository Component Catalogue" (NUMO, 2004)

6

(JAE

Application of KE technologies /tools to design work

- A basic KE approach to encourage lateral thinking involves identification of contradictions or conflicts in a problem and then using these to focus problem-solving in a systematic manner.
 - An example of conflict: Swelling of the bentonite buffer is needed to seal any construction gaps and to filter colloids. However, swelling during emplacement causes practical difficulties and makes QA of the barrier difficult

This is the basis of a formal method for innovative solution generation (TRIZ)

- TRIZ is often termed TIPS (the Theory of Inventive Problem Solving) in English
- Applications of the TRIZ concept to lateral thinking needed to develop novel designs are illustrated.

Principle of conflict identification

To facilitate lateral thinking, a "contradiction matrix" can be used to guide brainstorming on:

- Different goals with respect to attributes (diagonal cells) that should be improved in the development of solutions;
- Possible contradictions and/or conflicts (offdiagonal cells) for the different goals with respect to attributes;
- Potential solutions associated with individual goals referring to principles that can be used to resolve contradictions.

Contradiction matrix

Principles

List of principles that can be used to resolve contradiction and/or conflict between competing goals

8

JAEA

TRIZ application

There are two typical approaches for the application of the TRIZ concept;

- Bottom-up approach: in which the strengths and weaknesses of individual components of the system are explored and contradictions and/or conflicts are identified.
- Top-down approach: in which higher level requirements to develop a safety case are identified and propagated to lower levels in order to derive the contradictions and/or conflicts with sub-systems.

TRIZ bottom-up test case

- For the first exercise, radiogenic heat was identified as a potential problem from a bottom-up analysis of individual EBS components
- The TRIZ tool was thus used to access industrial examples where similar heat problems exist as the basis of developing novel design solutions.

An example of output design: introduction of heat transfer system

- Output designs are clearly impractical.
- The reason for this failure was the initial focus on individual components.
- To solve this problem, focusing on a combination of multi components and/or introduction of a top-down approach is needed

TRIZ top-down test case

- Implemented in workshops with expert staff mentors (transfer of tacit experience): design carried out as group exercises
- Conflicts identified with initial H12 designs: increasingly radical variants developed to resolve conflicts or optimise trade-offs

- Experience from the workshop will be used to improve both design procedures and applications of TRIZ to other problems
- Next application to more detailed requirements for increasingly well specified sites (following the progress of stepwise siting)

Application of KM technologies/tools to PA (1)

- Comprehensive total system PA is a key component of the safety case.
- Within this PA there are a number of tasks that reuse specific models and datasets, together with the associated knowledge base for the disposal system considered.
- These are PA tasks where recent developments in the Knowledge Management System by the Japan Atomic Energy Agency (JAEA KMS) can lead to optimised PA procedures.
- PA has been selected as an initial focus for testing the applicability of recently developed KM methodology/tools, with a particular focus on facilitating QA in a transparent and traceable manner.

((JAE

Application of KM technologies/tools to PA (2)

Dialog in the PA workshop

...KE methods utilised in yesterday's PA workshop: ... development in brainstorming and group exercises

Application of KM technologies/tools to PA (3)

- In the past, PA activities have relied, to a large extent, on integrating the experience from multidisciplinary expert teams.
- Given the greater challenges that are now faced to improve realism, a more formal approach is needed.
- This fits well with ongoing development of advanced Knowledge Management (KM) technology by JAEA, which will provide advanced tools to facilitate accessing and structuring of knowledge.
- The PA activities can then be subdivided as "Knowledge acquisition and structuring" and "Knowledge application".

((JAE

Application of KM technologies/tools to PA (4)

Knowledge acquisition and structuring

- Identifications of the flow of tasks;
- Acquisition of both "task knowledge" and "domain knowledge";
- Of particular relevance here is acquisition of both explicit knowledge and also the tacit knowledge which is represented by the experience of staff

Application of KM technologies/tools to PA (5)

Knowledge application to PA

- > PA involves standard tasks that are repeated many times;
- Advanced KM tools could increase efficiency, traceability, transparency of such PA tasks and ease the process of auditing / QA, for example by;
 - establishing ontology
 - expediting communication among different disciplines
 - defining targets of assessment in a systematic manner
 - easing execution
 - archiving all relevant data, information and knowledge in an easily accessible format
 - recording all the changes in a systematic manner for future reference.

Application of KM technologies/tools to PA (6)

As a demonstration of principle, a subset of KM tools will be examined, focused on:

- Easing execution of PA tasks
- Recording changes in a systematic manner for future reference

Development and demonstration of "PAIRS" (Performance assessment <u>A</u>II-<u>I</u>n-one <u>R</u>eport <u>S</u>ystem) to integrate reporting, calculations and change management in PA supporting a safety case.

"PAIRS" and relevant components

e-PAR

A Web-based 'all-in-one' Performance Analysis Report

Web-based

- > PA Report shared and edited on web in a collaborative manner
- To be linked in 'CoolRep'

'All-in-one'

- Hyperlinked with all the resources required to carry out analyses
 - simulation tools via 'ETL' (see following slides)
 - data-base via 'Parizade' (see following slides)
 - Knowledge-base
- Developed with 'Aladdin' (see following slides)
- Allows CoolRep users to reproduce/verify existing results and try variations according to their own interests/concerns
- Provides traceability and facilitates quality management

User friendly

- Technical details of calculations are kept in the background
- Support (tacit) knowledge is provided to non-expert users from an associated knowledge-base and 'ETL' to prevent misunderstanding and avoid ill-defined problems

Aladdin <u>Al</u>I-in-one <u>ad</u>vanced <u>d</u>ocument <u>in</u>tegration system

: Aladdin : e-PAR > e-PAR development : PAIRS environment consisting of: ETL Knowledge-base User interface (UI) Parizade - UI Configuror - UI Editor Tables (Input data-set etc.) Figures Background knowledge (Output Change management graphs, etc.) e-PAR case-base - Rule-base e-PAR UI - Record Tables Configurator **UI Edito** igure > ETL (see following slides) Main text and its edition Change management e-PAR variation Highlight texts, figures, tables that may require changes to guide edition Record history of changes in e-PAR's Compare differences between versions

ETL Encapsulated Task Library

Tasks for performance analyses

Performance analyses include a variety of tasks ranging from data manipulation and graph drawing to running high-end numerical simulation tools using a range of software, e.g., MS Excel, AVS, CAD, PHREEQ, FEMWATER, ABAQUS, GoldSim

Technological details associated with such software

- Discourage non-expert users or generalists to 'walk through' the steps of a PA analysis; resulting "black box" treatment reduces traceability
- > Reduces efficiency of PA and increases risk of human errors

ETL solution

- Encapsulates tasks by recording every 'move' on a PC during software application when carried out by an expert user via TestComplete (www.automatedqa.com/products/testcomplete/)
- Allows non-expert users to re-run any existing applications with different input data, for example, without being bothered by the details

Encapsulation of PA tasks

22

Parizade

PA repository and information zone for assessment data exploration

- Background
 - Data used in PA can be derived from a variety of sources, e.g. lab / field / natural analogues
 - The data chosen for PA need to be condensed from these raw data sources
 - > Data is not static. As the programme continues:
 - Values / PDFs can become more accurately known / more refined as components of the system are investigated in more detail.
 - Basic assumptions / concepts can change, leading to new data sets

Motivation

Management and recording of the original sources and evolution of input data is critical to maintaining consistency in a PA programme – and is a key component of technical QA

Princess Parizade shows the singing tree to the Sultan (from http://www.sacred-texts.com)

Example application

24

Hit by fault

1.E+06

Short-circuited

1.E+07

Concluding remarks

- Design & PA are closely related areas where progress has been made in the last year, introducing KE tools that:
 - facilitate development of innovative approaches to problem solving
 - improve transfer of tacit knowledge to younger groups who will be required to develop the next generation of designs and PA models
 - ease handling of design and PA activities as part of iterative development of safety cases
- Experience gained for the case of HLW will, next year, be applied to the area of TRU disposal

26