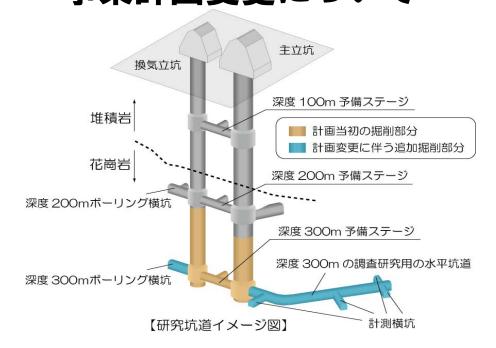


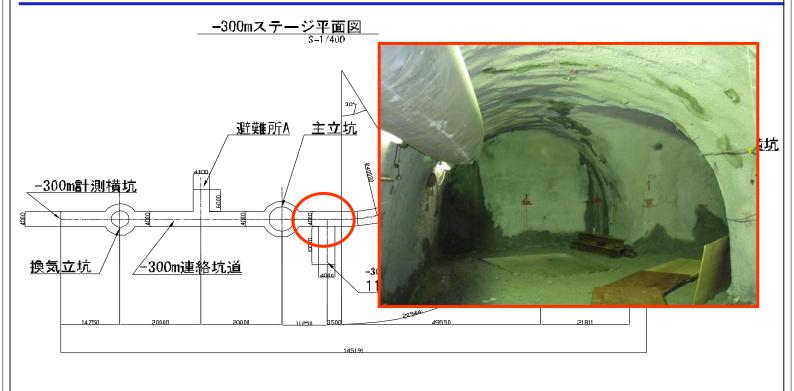
報告内容

- 1. 超深地層研究所計画の概要
- 2. 平成20年度の事業計画の変更
- 3. 調査研究の現状
- 4. 施設建設の現状
- 5. 研究成果の公表・国際貢献など

超深地層研究所計画(瑞浪)の概要



- 〇第1段階で予測した地質環境モデルの妥当性を研究坑道の掘削・掘削中の 調査研究を通して確認
- ○不均質な地質環境を対象に、地上から、どのような調査・解析を行えば、 どの程度まで予測できるか、合理的・効率的な調査・解析方法とは
 - ・・・実際の地質環境で実施した結果に基づく、調査・解析手法の提示
- ○平成20年度・・・深度300mまでの地質環境情報を取得し、検討を実施

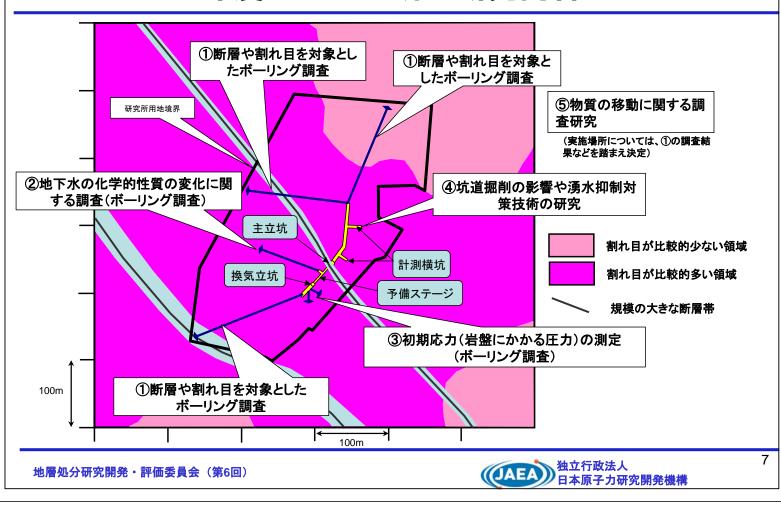

地層処分研究開発·評価委員会(第6回)

独立行政法人 日本原子力研究開発機構

平成20年度の 事業計画変更について

坑道レイアウト(案)

地層処分研究開発·評価委員会(第6回)


深度300mでの調査研究の必要性

深度300m付近の地質の状況や利点を踏まえ、 深度300mに調査研究用の水平の坑道を設置する

- ○深度300m付近は深部と異なる地質条件(割れ目が多く湧水の可能性がある)を有していることが分かってきており、この深度で調査研究を実施することにより、深部での調査研究の成果と合わせ、技術の高度化が可能となること。
- ○水平坑道を利用した研究の場を早期に確保し公開することにより、国民との相互理解の促進に一層貢献できること。

5

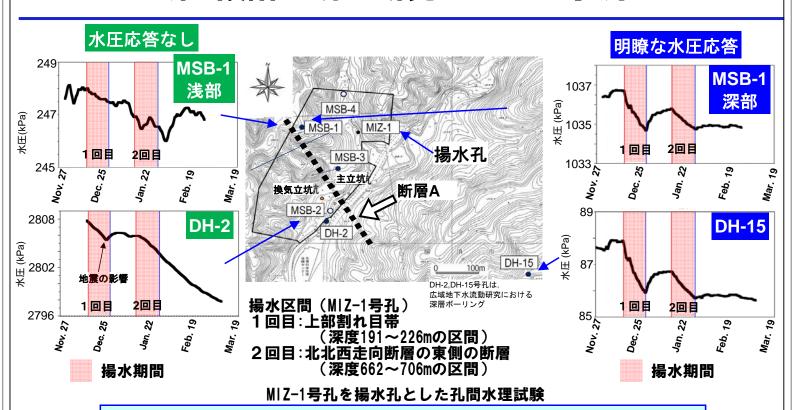
深度300mでの調査研究内容

調査研究の現状

坑道壁面観察



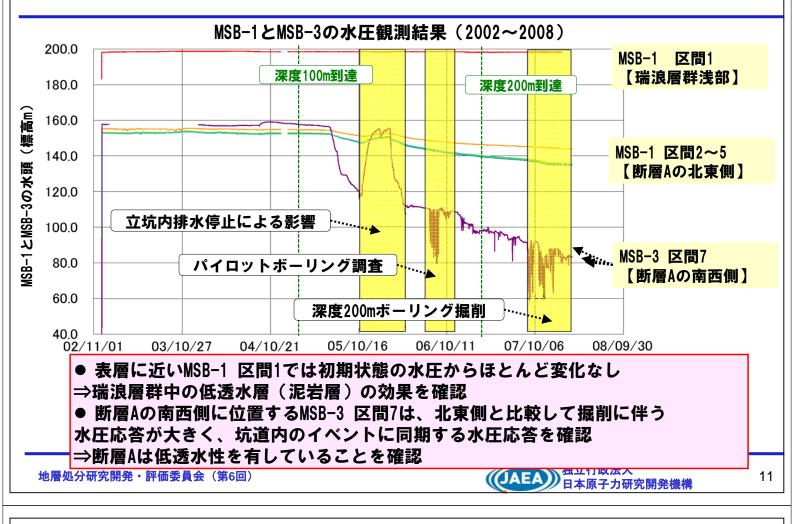
ボーリング調査 (200mボーリング横坑)


第2段階の調査研究項目の例

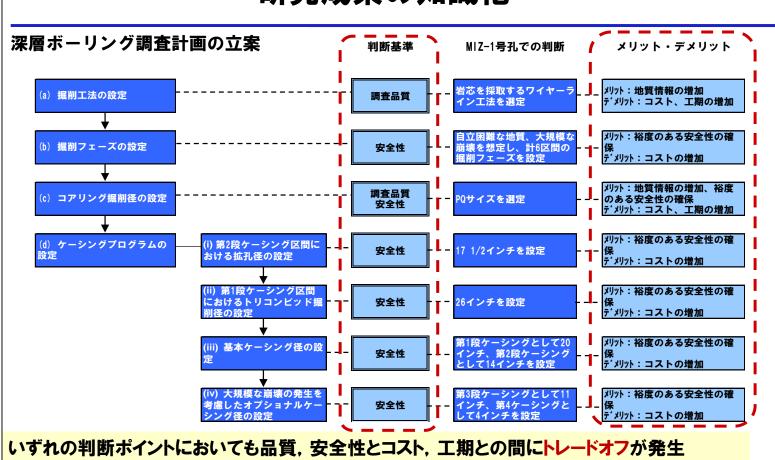
	平成20年度の主な実施項目	
地質	·物理探査(逆VSP探査, 流体流動電位法探査)	
	・研究坑道の壁面地質調査および壁面物性計測	
	・地質構造モデルの構築・更新	
	・物理探査手法・地質調査手法・地質構造モデル化手法の高度化	
水理	・立坑の集水リングを用いた湧水量計測	
	・調査ボーリング孔を用いた間隙水圧測定(水理ボーリング調査)	
	・地表からのボーリング孔での間隙水圧モニタリングおよび表層水理観測	
	・水理地質構造モデルの構築・更新	
	・データベース・地質環境データ解析・可視化システムの構築	
地球化学	・立坑壁面および集水リングを用いた坑内湧水の採水・分析	
	・予備ステージボーリング孔における地下水水質観測	
	・地表からのボーリング孔における地下水水質観測	
	・地球化学モデルの構築・更新	
	・溶存ガスの定量・定性分析のための技術開発	
岩盤力学	・岩盤力学調査	
	・岩盤力学モデルの構築・更新	
	・岩盤の長期挙動評価手法の確立	

地層処分研究開発・評価委員会(第6回)

第1段階の調査研究に基づく予測



● MIZ-1号孔を揚水孔とした孔間水理試験を実施した結果、 断層Aおよび堆積岩中の泥岩層が遮水性を有していると推定


> M立行政法人 日本原子力研究開発機構

9

第2段階の調査研究結果による妥当性の確認

研究成果の知識化

研究坑道建設の進捗状況

(深度100m毎)

深度300m

調査研究用

水平坑道

平成15年7月

地上部 掘削工事着手前

平成17年6月

深度100m 予備ステージ貫通

平成19年9月

深度200m 主立坑ボーリング横坑の露岩部

平成20年11月28日作業終了時点

40m

・主立坑: 深度300.2m ・換気立坑:深度300.2m

100m

ボーリング

横坑

・水平坑道:深度300m予備ステージ

主立坑壁面から26.4m掘削 深度300m調査研究用水平坑道 主立坑壁面から40.7m掘削

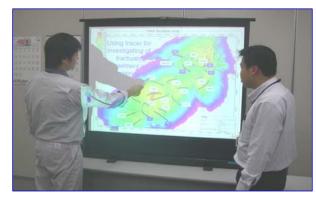
平成20年8月

深度300m 主立坑から予備ステージ 坑口施工

地層処分研究開発·評価委員会(第6回)

独立行政法人 日本原子力研究開発機構

13

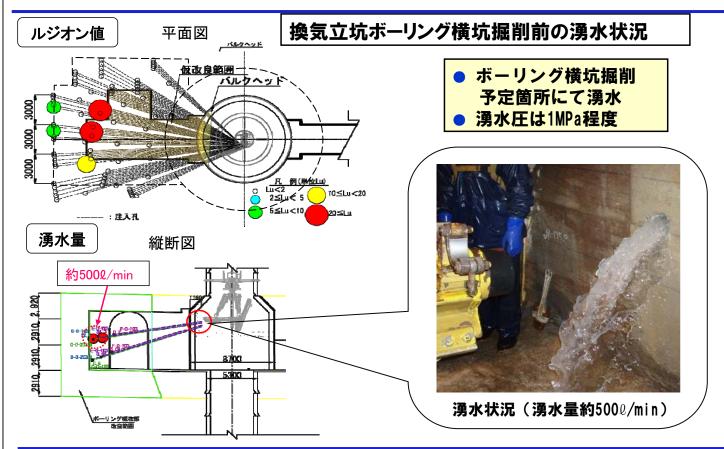

研究開発成果の情報発信・理解促進・国際貢献

- ○学会等における口頭発表, 論文投稿 日本原子力学会, 土木学会, 日本応用地質学会, 日本地下水学会, 他
- ○原子力機構・研究開発報告書類の刊行
- ○東濃地科学センター 地層科学研究 情報・意見交換会(平成20年10月)
- ○見学者の受入れ

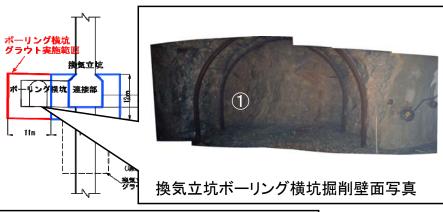
平成19年度:3.360名、平成20年11月現在:2266名

- ○学習施設としての研究施設の活用 スーパーサイエンスハイスクールへの協力、サイエンスキャンプの実施
- ○国際貢献

ベトナム原子力研究所からの研究員受入れ(平成20年9月~12月)


ご参考

地層処分研究開発·評価委員会(第6回)



15

湧水抑制対策(グラウチング)実施結果の一例

坑道掘削後の湧水抑制効果

坑道掘削後、壁面での割れ目 へのグラウト材の浸透・固化 状況を確認

掘削壁面の湧水は、注入孔 削孔時に湧水が確認され た箇所周辺を含めて滴水 程度であり、顕著な湧水 は観察されていない

(1): 高角度割れ目に充填したグラウト材

グラウト材が浸透・固化

グラウト材が浸透していない 割れ目

浸透していない部 分からの湧水は ほとんどない

地層処分研究開発·評価委員会(第6回)

独立行政法人 日本原子力研究開発機構

17