Case studies based on JAEA's URLs site description Horonobe URL Project

Applicability of Safety Assessment Methodology

Workshop on "Assessing the suitability of host rock"

Yokohama Minato-Mirai, LandMark Tower October 7, 8, 2010

Keisuke Maekawa

Japan Atomic Energy Agency

JAEA's recent activities (again)

with following JAEA's URLs programs and schedules

- Development of heterogeneous pathway assessment methodology from deep underground to surface environment,
 - for evaluating the nuclide retardation effect,
 - using URLs surface-based investigation data.
- Development of host rock classification methodology from nuclide transport retardation effect in relatively larger scale (regional-site) site descriptive models.
 - with defining key parameters indicating nuclide retardation effect, such as nuclide transport path length, velocity and etc.
- Developing of quantitative host rock performance evaluation methodology at abstracted host rock,
 - for prospecting variability of host rock performance caused by not evenly identified minor structures.
 - Quantify host rock performance, according to available data at surface based investigation phase.
 - This examination might contribute not only for DIA selection, but also next phase investigation at / around tunnel.

1

A frame of activities between SC & PA

4

Strategy and assumptions

- Based on same methods as specified in H12 Report
- Conceptualization of solute transport: Porous media
 →True velocity from groundwater flow simulation
 →Connect 1D models along a transport pathway
- Assumed to select a relevant geological environment
- Except for the biosphere
- Laboratory experimental data by core specimen :
 - \rightarrow Actual data from surface-based investigation
- Steady state condition based on the present status of characteristics of geological environment

Modeling of Geological Environment

Conceptualization of Solute Transport

8

Extract transport pathway

Objective Area for Groundwater Flow Analysis

Setting parameters

			Setting value	Uncertainty	Remarks
[Groundwater Flow] • Velocity • Transport distance	Pathway length [m]		1) Apply pathway information from GW flow analysis 2) Wk:250, Kt: 6,000	2) Wk: 250~2,000 Kt: 700~6,000	
	Darcy velocity $[m y^{-1}]$		 Apply pathway information from GW flow analysis Wk: 6 × 10⁻⁴ Kt : 3 × 10⁻³ 	2) 1/10~10 times of Setting value	
	Flow porosity	Wk	0.38	1/10	
	Discussion loss th	Kt	0.54	,	
[Solute Transport in Natural Barrier]	Porosity of host rock	Wk	0.38		=Hydraulic effective
		Kt	0.54	1/10	porosity
Porosity of rock	Dry bulk density of	Wk	1.43	2.22	Uncertainty are set
Diffusion coefficient of rock	host rock [g cm ⁻³]	Kt	1.00	2.06	by 1/10 of porosity
	Effective diffusion coef.	Wk	2x10 ⁻¹¹	1x10 ⁻¹² ~7x10 ⁻¹⁰	28.3 deg. C
Dispersion length	of host fock [III 3]	Se	0.01~0.1	0.001~0.1	
	Distribution	Cs	0.1~0.5	0.05~1	
•Amount of input source	rock [m ³ kg ⁻¹]	Np Th	1~10	0.1~50	
[Solute Transport in Engineered Barrier] Solubility of buffer material Diffusion coefficient of buffer material Kd of buffer material	Effective diffusion coefficient in buffer material [m ² s ⁻¹]	Se	2x10 ⁻¹⁰		
		Cs	4x10 ⁻¹⁰		40 deg C
		Np Th	2x10 ⁻¹⁰		40 ueg. e
	Distribution coefficient in buffer material [m ³ kg ⁻¹]	Se	0		
		Cs	0.001		
		Np	1		
Elow rate into ED7		Se	5x10 ⁻¹¹		
	Solubility in buffer	Cs	Soluble		
	material [mol l ⁻¹]	Np	5x10 ⁻⁸		
		Th	8x10 ⁻⁶		
	Flow rate into EDZ [m ³ y ⁻¹]		0.005	0.001~0.05	

Example result of solute transport analysis

12

-The decrease in release rates caused by the natural barrier would be large -the decrease rate is sensitive to changes in parameters such as true velocity, porosity and Kd.

Results of 1st Topic

-We showed a series of safety assessment methodology established in the H12 Report based on actual data.

-The required procedure from SC to PA has been summarized as a work flow.

-Through the sensitivity analysis of solute transport, it was confirmed that the analytical results (decrease in release rates) caused by the natural barrier would be large and was sensitive to changes in parameters such as true velocity, porosity and Kd.

Approach, as one of key methods to be developed

14

with following URLs programs and schedules

 <u>Development of the host rock classification method by</u> evaluating nuclide retardation effect in regional-site scale

- Define key parameters indicating nuclide retardation effect, such as nuclide transport path length, velocity and etc.
- Demonstrate the methodology how to abstract the relatively high performance area based on the key parameters.

- Development of quantitative evaluation method of abstracted host rock performance
 - Quantify host rock performance, according to available data at each infestation step.

Linkage between site-investigation and safety concept

Indices for evaluating nuclide retardation effect

16

In order to evaluate nuclide retardation effect in regional area, transport properties such as transport pathway and flow velocity are indispensable

An example indices for evaluation

Reference case

Alternative case

Cross section at EL. -500m (5 km x 5 km)

Ē			
Ē			
F			
-			
i -		-	
-			
t			

18

An example of evaluating methodology

-We showed examples for evaluating methodology nuclide retardation effect -Which indices will be relevant? How large should be defined as objective area? ...