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Today contents @

e Aim of mass transport/nuclide retardation investigation
e Concept of mass transport/nuclide retardation processing

* Goals of the mass transport/nuclide retardation investigations on
MIU project based on the existing information

* Examples of in-situ and laboratory tests
e Status of international collaboration works
* Aninstance of effort for nuclide retardation investigations
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Aim of mass transport / nuclide retardation @
investigation

e To develop systematic methodology for relevant
investigation and evaluation of structure, which
contribute to groundwater flow between tunnel wall’s
back and 100m ahead, groundwater flow system and
mass transport properties

v to assess for relevance of hydrogeological model and mass
transport conceptual model, and to update their models

v’ to obtain parameter using on mass transport analysis
v to understand mass transport and retardation processes
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less than hundred meter scales around the drift

Modified from JNC(1999)
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Concept of mass transport processing (2) @
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Goals of the mass transport and nuclide retardation investigations at @
MIU project based on the existing information e

e Understanding the relation between the heterogeneous

geological environments and nuclide retardation
— the heterogeneous geological environments are observed
in/around the shafts and research galleries at MIU site

 Development of techniques for characterising the mass

transport and nuclide retardation
— in-situ and laboratory test
— mass transport analysis

e To clarify remaining issues in the mass transport and

nuclide retardation
— a parameter for mass transport and nuclide retardation is
difference between in-situ and laboratory test
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Current result of fracture distribution
at GL-300m stage (1)

Fracture mapping

— High-angle fracture with grouted material
—— Low-angle fracture with grouted material
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Current result of fracture distribution
at GL-300m stage (2)

= NER
aa T T | T [T ||II||.|IIII.|II||||I“"|I.|I"|I.llll
:
0 =NWHR

s '™ " | - I | 1 |
TR T | I I I T P L1 I T 0

NNWFR

Fracture frequency

8.0 14.5 216 287 62.4

Distance from the main shaft

68.8 75.2

Ventilation shaft i 7
) — — an X
v AL o i A =
P el gL £ +
o “ S
in shaf s Whole fractures in 300m access

Main shaft tunnel (1.6-96.0m

b Nt

N=1103 (Lower)

workshop on “Assessing the suitability of host rock™ on 2010.10.07°08




Classification of fractures in/around shafts and ~ )
research galleries @
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Distribution of fractures in/around the shafts and @
research galleries at GL-300m stage ~
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There is not information of mass transport properties regarding fractures.
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Distribution of the groundwater chemistry around @
Mizunami URL -
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Investigation scale and items @
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Examples of in-situ and laboratory tests @
1) pore structure and elements mapping :
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Examples of in-situ and laboratory tests ( )
2) pore structure and elements mapping @ |
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Examples of in-situ and laboratory tests ( )
3) Diffusion experiment @
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Examples of in-situ and laboratory tests ( )
4) Example of tracer experiment (cross hole test) @ |

West =- (m) > East

4 LB B2 o 3 0B o8
= KH-20 KH-24 KH-25
& el kH21 |
= “Zone F KH-19
AT KH23  poNEE
. 77KIH-22 ' [l Zone E /
=1 N A1 /
- g Zone D
3 . X 2 3 S
= = = i ) £ z E}DD q ‘/_
r —— — = = a 7 %g Zone © Zone B
e LN ZOHEA
e Goal - L ..
. . . j Access Drift
v’ Developing the concept of selecting test location and . - ||
test procedure, etc. . \%A_ = i o
» Fracture network kosoom \\| £ s

» Single fracture
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@ JAEA had experienced at Kamaishi.
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Examples of in-situ and laboratory tests
5) Example of tracer experiment under the flow controlled

Create no-flow boundary
using slot-drill holes

Create no-flow boundary
using boreholes

Channel

@

v Low permeability single fracture
v Background of hydraulic gradient
v" Short and Long term experiment

Isolate channel with double packer

Create no-flow boundary
covering fracture on drift wall

Drill large diameter
boreholes along fracture

;
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Current status of in-situ investigations at GL-300m
stage

Borehole investigation for the fault
study

[T]LSFD (Lower Sparsely Fractured Dom x ——————————————— N\

ain)=7
|:| UHFD (Upper Highly Fractured Domain)
. Major Fault

Borehole investigation for selecting a
tracer test area
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Strategy and methodology for selecting tracer test ( )
location @

* To clarify the relation between geological structures and mass
transport properties.

— Laboratory test
— Predictive borehole investigation

* To select a target of the geological structure for the tracer test
(mass transport investigation).

— Part of the matrix in/around host rocks
— Fault and fracture

* Fault

* Single fracture or fracture network
— Predictive modeling and analysis
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Remained issue for in-situ tracer test (@

» lItis possible to evaluate the flow porosity contributed to advection.

» ltis limited to apply a result of tracer test to performance assessment

» The conductivity of target fracture observed in tracer test is higher than the
conductivity of an important fracture regarding performance assessment.

v It is very difficult to investigate the low conductivity fracture under the
natural conditions.

» A conductivity of target fractures investigated is higher than important
fracture for mass transport analysis. The internal structure may be different.

» The result of diffusion coefficient evaluated by in-situ test tends to be higher
than that evaluated by the laboratory test (one of the international
remaining issues).

» Hydrological condition during tracer test is different from natural
groundwater flow.

v’ It is unsuitable to evaluate the flow wetted surface.
» Itis not enough to understand the mass transport processing.
» The parameters observed in tracer test might be unique characteristics.
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Status of international collaboration works (1)
1) Long term diffusion test at GTS

Over coring and core material
http://www.grimsel.com/gts-phase-vi/ltd/Itd-phase-i-update
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Activity measured in one rock coupon
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Layout of the long term diffusion test at GTS ® i~
A. Méri, P. Soler, K. Ota, V. Havlova 2007 ’Grimsel Test Site Phase VI, LTD WP 1: Predictive 010 —_—
. . ’ _"‘—\—‘-o—"’_.-\_\_‘—Q—'"_'_._‘_:
Modelling for LTD Monopole Experiment’, Nagra NAB 07-42 NI

oot Distance from borehole wall (cm)

Results of diffusion profiles

http://www.grimsel.com/gts-phase-vi/ltd/Itd-phase-i-update
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Status of international collaboration works (2) @
2) Modeling works with LTD project at GTS |

Distribution of tracer concentration in the rock matrix predicted by
3D Nflow

Conceptual model for D analysis Distribution of tracer concentration
3H

.

Packer
0.5m

=+ Testinterva ||
# 0.7Tm

BDZ 3mm

A. Méri, P. Soler, K. Ota, V. Havlova 2007 ’Grimsel Test Site Phase VI, LTD WP 1: Predictive
Modelling for LTD Monopole Experiment’, Nagra NAB 07-42 Afte r 5 yea rs

A. Mori, P. Soler, K. Ota, V. Havlova 2007 ’Grimsel Test Site Phase VI, LTD WP 1: Predictive
Modelling for LTD Monopole Experiment’, Nagra NAB 07-42

» Only reference parameter values were used for the comparison.

»Tracer diffuses in 3D direction.

»127] and 134Cs diffuse not only into the rock matrix perpendicular to the injection
borehole but also upwards and downwards within the BDZ along the borehole.
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A instance of effort

task flow for the diffusion and sorption test in laboratory @
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“ Sample preparation }7

s v v
Through diffusion Batch sorption Porosity
experiment experience measurement

' ! !

Diffusion and Partition coefficient Partition coefficient Porosity

Y
4>{ Thin section

‘Thin section observation ‘

‘International corroboration works

petrologic texture Nagra (GTS)

SKB
modal compositions

EPMA

Element mapping Knowhow

ost rock” on 2010.10.07°08
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A instance of effort
Data flow diagram of nuclide retardation
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Conclusion (1) @

Important aims and investigation items in MIU project are

e Understanding the relation between the heterogeneous
geological environments and nuclide retardation

— Relation between the fracture types and mass transport
properties
v/ porosity
v/ diffusion and sorption properties, etc.
— Understanding the depth dependency of nuclide retardation
v'GL -300m and -500m access/research gallery
— An important characteristic in performance assessment
should be clarified.

v’ Geological environments
v Mass transport properties
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Conclusion (2) @

* Establish the transferability of laboratory-derived solute
transport/retardation data to in-situ conditions
— To obtain the in-situ data by using shafts and research galleries

— To obtain the laboratory scale data by using the facilities of ENTRY and
QUALITY in Tokai works

— International collaboration works

* Establish the strategies of nuclide retardation investigations
— Development of the task flow for nuclide retardation investigations
— Development/update of the data flow diagram for nuclide retardation
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Discussion points @

e How do you think the goals of mass transport and nuclide
retardation investigations on MIU project?
— Whether a similar research has already been performed or not?

 How should be decided the (in-situ) test location?
— What is a degree of conductivity for applicable tracer test?

— Itis important that the hydraulic pressure is stable for the long term
diffusion experience. How can the test condition be allowed?

* Necessity of considering the near field effects (e.g. EDZ).
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