

原子炉の廃止措置における放射化断面積データの現状と利用(4)

埋設処分に向けた研究炉廃棄物の放射化計算の 検討状況

2022年9月9日

原子力機構 埋設事業センター 河内山真美、坂井章浩

はじめに

<u>背景</u>

原子力機構では、研究施設等廃棄物の埋設処分に係る検討の一環として、研究炉の解体によって発生する廃棄物に対し新しいライブラリ(JENDL-4.0等)を用いた計算による放射能インベントリの評価手法を検討

<u> 発表内容</u>

- 1. 新しいライブラリを用いた放射能評価
- 2. 評価した放射能の埋設処分への適用検討

1. 新しいライブラリを用いた放射能評価

- ▶ 新しいライブラリとしてJENDL-4.0及びJENDL/AD-2017 を基に作成した断面積を用いて計算を実施
- ▶ 立教大学研究炉を対象として、過去の計算及び分析値 と比較
 - 1. 立教大炉について
 - 2. 放射能評価の計算フロー
 - 3. 中性子輸送計算の結果
 - 4. 放射能濃度の計算結果、分析値との比較

1-1 立教大学研究炉について

<u>これまでの経緯</u> 研究炉の共通的な放射能評価手法検討のため、 試料採取及び放射化学分析と放射能評価計算(従来計算)を実施

放射化学分析

試料採取場所:アルミニウムタンク周辺のP01、P02、P03 材質:アルミニウム、炭素鋼、生体遮蔽コンクリート 核種:H-3、Co-60、Ni-63、Eu-152

1-2 放射能評価計算のフロー

本検討では、DORT計算及びORIGEN-S計算で新しいライブラリを使用

1-3 中性子輸送計算結果

本検討の方が一部領域で熱中性子束の分布が小さくなる傾向 →従来計算に比べ群数が増え、熱中性子束の挙動がより正確 に評価できるようになったため

1-4 放射能濃度の結果

試料の放射化学分析、従来計算、本計算の放射能濃度

材質	友 種	試料採取	(a)分析	(b)従来計算	(c) <mark>本計算</mark>
	修理	位置	(Bq/g)	(Bq/g)	(Bq/g)
	H-3	P01	0.105 ± 0.001	0.962	0.0570
-		P02	0.0255 ± 0.0007	0.762	0.0364
		P03	0.00234 ± 0.00052	0.401	0.0367
ルニ		P01	0.154 ± 0.006	0.315	0.100
	Co-60	P02	0.0682 ± 0.0045	0.205	0.0647
		P03	0.0417 ± 0.005	0.148	0.0630
		P01	0.314 ± 0.009	0.190	0.135
4	Ni-63	P02	0.119 ± 0.009	0.118	0.0986
		P03	0.0588 ± 0.005	0.117	0.107
	H-3	P03	<0.0016	0.421	0.173
	Co-60	P01	3.38 ± 0.07	7.91	3.09
<u>ш</u>		P02	1.45 ± 0.03	4.88	1.97
灰		P03	0.785 ± 0.019	4.50	1.35
糸纲	Ni-63	P01	0.588 ± 0.019	0.990	0.364
当时		P02	0.258 ± 0.016	0.625	0.256
		P03	0.0727 ± 0.0086	0.414	0.162
	Eu-152	P03	<0.077	0.0820	0.0347
		P01	9.91 ± 0.01	23.0	7.95
_	H-3	P02	4.79 ± 0.01	15.5	5.69
		P03	1.136 ± 0.003	6.05	3.60
		P01	1.13 ± 0.02	1.92	0.890
	Co-60	P02	0.518 ± 0.01	1.26	0.617
		P03	0.18 ± 0.002	0.958	0.383
		P01	1.38 ± 0.02	1.97	0.690
	Eu-152	P02	0.536 ± 0.01	1.32	0.577
		P03	0.116 ± 0.002	0.647	0.328

1-4 放射能濃度の結果(比較)

放射化学分析、従来計算、本計算の放射能濃度の比較

材質	核種	試料採 取 位 置	(d) 本計算	(e) 本計算 /從 本計算
			/ /////	
ア	ЦЭ	PUI	0.54	0.06
	11-3	P02	1.4	0.05
ル		P03		0.1
Ξ	C- 60	PU1	0.05	0.32
—	C0-00	P02	0.95	0.32
ウ		P03	1.5	0.43
ム		P01	0.43	0.71
	INI-03	P02	0.83	0.84
		P03	1.8	0.91
	H-3	P03	>108	0.41
	Co-60	P01	0.91	0.39
モ		P02	1.4	0.40
火		P03	1.7	0.30
糸纲	Ni-63	P01	0.62	0.37
뽀		P02	0.99	0.41
		P03	2.2	0.39
	Eu-152	P03	>0.45	0.42
		P01	0.80	0.35
_	H-3	P02	1.2	0.37
		P03	3.2	0.60
ン ト		P01	0.79	0.46
ショ	Co-60	P02	1.2	0.49
9 1		P03	2.1	0.40
L L		P01	0.50	0.35
Ι.	Eu-152	P02	1.1	0.44
		P03	2.8	0.51

■分析に対する本計算の比
 0.4~3.2倍程度で一致
 P03のH-3の値が大きく外れている
 →起源元素Liの設定が大きすぎた(文
 献値を用いた)

●従来計算に対する本計算の比
 0.1~0.9倍で一致
 従来計算との差は、中性子束の違い
 (ライブラリの影響)

これらの差を考慮して、廃棄物 に対する放射能評価に計算を 適用していく。

2. 評価した放射能の埋設処分への適用検討

埋設事業申請では、放射能評価の結果を用いて 埋設処分区分(ピット処分、トレンチ処分など)の決定、 被ばくへの寄与が大きい重要核種の選定が必要

- 1. 埋設処分に必要な検討のフロー
- 2. 基準線量相当濃度C[Bq/t]について
- 3. JPDR原子炉について(埋設対象廃棄物)
- 4. 埋設処分区分の判定の検討
- 5. 重要核種の選定の検討

▶JPDR原子炉※の保管コンクリートを対象として、予備的 に評価を実施した

※動力試験炉Japan Power Demonstration Reactor

2-1. 埋設処分に必要な検討のフロー

1、埋設対象廃棄物の平均放射能濃度D[Bq/t]を算出

 ✓ 線量評価シナリオにおける 基準線量相当濃度C_i
 ✓ 相対重要度(Di/Ci)

2、埋設処分区分の判定

各被ばく線量評価シナリオでΣ_i(D_i/C_i)<1ならば、埋設可能

 3、埋設処分における重要核種の選定 被ばく線量評価シナリオ毎に(D_i/C_i)が大きいものを 重要核種の候補として選定

2-2トレンチ埋設の基準線量相当濃度C[Bq/t]

✓ 埋設処分後の周辺公衆への被ばく線量評価シナリオにおいて、
 基準線量: 10 µ Sv/y(自然事象シナリオ)

300 µ Sv/y(人為事象シナリオ)に相当する廃棄物の放射能濃C[Bq/t]

✓ 線量評価シナリオ毎、核種毎に算出される

グ現在、原子力機構で概念設計に対して基準線量相当濃度※を試算している

※菅谷敏克ほか,研究施設等廃棄物の浅地中処分のための基準線量相当濃度の検討(その1), JAEA-Technology 2021-004(2021), 79p.

2-2トレンチ埋設の基準線量相当濃度(つづき)

◆線量評価シナリオと基準線量相当濃度C[Bq/t]の例

			(自然	(人為事象300µSv/y)				
		河川水	灌漑水	河川岸			跡地利用	
		河川水 利用	河川水/ 灌漑水利用	河川岸 建設	河川岸 居住	河川岸 農耕作業者	建設	居住
1	H–3	5.2E+08	3.4E+09	6.6E+15	3.7E+16	6.1E+09	2.1E+15	4.3E+09
3	Be-10	2.3E+09	1.3E+10	1.1E+11	3.7E+11	1.5E+10	2.7E+11	2.5E+10
219	Fm-257	2.4E+13	2.5E+13	8.2E+12	2.5E+13	4.8E+12	5.8E+10	8.1E+11
220	Md-258	1.5E+13	2.8E+13	2.1E+13 8.3E+13 1.9E+13		8.9E+12	1.9E+14	

◆相対重要度(D_i/C_i)

基準線量相当濃度Ciに対する廃棄物の平均放射能濃度Diの比で、 <mark>埋設処分の線量基準に対する裕度</mark>を示す。

例えば、一つの核種でD/C=1になってしまうとこの時点で自然事象 シナリオの10μSv/yになってしまう。

2-3 JPDR原子炉について

JPDRは、1996年に解体が終了

- ✓ 生体遮蔽コンクリートのうち比較的外側の部分
 については既に埋設済み
- ✓ 表面から80 cm以内の生体遮蔽コンクリート(黒 塗り部分)は、現在保管中
- ⇒保管中のコンクリートを埋設対象廃棄物として、 埋設処分区分及び重要核種の選定手法を検討

2-4 埋設処分区分の判定

対象廃棄物の相対重要度 (D_i/C_i) とシナリオ毎の和 $\Sigma_i(D_i/C_i)$

		河川水	灌漑水	河川岸			跡地利用 (人為事象300µSv/y)		
		河川水 利用	河川水/ 灌漑水利用	河川岸 建設	河川岸 居住	河川岸 農耕作業者	建設	居住	
1	H-3	6.4E-01	9.8E-02	5.1E-08	9.1E-09	5.5E-02	1.6E-07	7.8E-02	
	• •								
140	Es-255	0	0	0	0	0	0	0	
	合計	8.17E-01	1.08E-01	4.28E-03	7.88E-04	6.86E-02	1.06E-01	1.45E-01	

すべてのシナリオにおいて $\Sigma_i(D_i/C_i) < 1 \Rightarrow$ トレンチ埋設処分可能と評価された

2-5 重要核種の選定(フロー案)

2-5重要核種の選定(試算結果)

対象廃棄物に対する(D_i/C_i)/(D_i/C_i)_{MAX}の試算結果

(Di/Ci)/(Di/Ci)_{MAX}≧0.01

		河川水	灌溉水		河川岸	跡地利用 (人為事象300µSv/y)		
No.	核種	河川水 利用	河川水/ 灌漑水利用	河川岸 建設	河川岸 居住	河川岸 農耕作業者	建設	居住
1	H-3	1E+00	1E+00	3E-05	1E-05	1E+00	2E-06	1E+00
3	C-14	3E-01	2E-03	8E-07	1E-06	3E-03	2E-06	2E-02
7	CI-36	7E-05	2E-03	1E-05	5E-06	7E-03	3E-06	4E-02
9	Ca-41	5E-04	8E-03	7E-06	2E-06		1E-06	8E-02
21	Sr-90	3E-06	8E-05	2E-07	3E-08	3E-04	7E-07	5E-02
66	Eu-152	5E-10	3E-08	1E-05	7E-06	6E-07	1E+00	3E-01

トレンチ処分の重要核種の候補として、 H-3、C-14、Cl-36、Ca-41、Sr-90、Eu-152が選出 ⇒これらの核種について、埋設事業許可申請時に廃棄物全体の 総放射能量及び廃棄体毎の最大放射能濃度の評価が必要

このように重要核種を選定する方法を検討している

まとめと今後

<u>まとめ</u>

- 1. 埋設処分に向けた放射能評価計算において、新しいラ イブラリを用いた手法を検討している
 ⇒新しいライブラリを用いた計算が埋設処分対象廃棄 物の放射能評価に適用できる見通しが得られた
- 2. 計算による放射能の評価結果から埋設処分区分判定と 重要核種を選定する方法を検討している

<u>今後</u>

埋設事業を合理的に進めるため、引き続き、最新のライブラリを用 いた埋設処分対象廃棄物に対する放射能評価の検討を進める ✓ 199群の中性子スペクトルをそのまま用いて作成された1群ライブラリを用いる ORIGENコード(SCALE6.2付属)の導入の検討など

ご清聴ありがとうございました

未来へげんき To the Future / JAEA

研究や医療などから発生する 放射性廃棄物の埋設をめざして

~持続可能な原子力の研究や放射線利用のために~

(お知らせ)

お問合せはこちらまで

((AEA) 国立研究開発法人日本原子力研究開発機構

埋設事業センターのパンフレットを更新しました。

10

1-4 採取試料の分析値と計算の比較(補足)

材質	核種	試料採 取位置	(a) <mark>分析</mark> (Bq/g)	(b)従来計算 (Bq/g)	(c)本計算 (Bq/g)	(d) <mark>本計</mark> 算/ 分析	(e) <mark>本計算</mark> / 従来計算	✓
アル		P01	0.105 ± 0.001	0.962	0.0570	0.54	0.06	
	H-3	P02	0.0255 ± 0.0007	0.762	0.0364	1.4	0.05	
		P03	0.00234 ± 0.00052	0.401	0.0367	16	0.1	
		P01	0.154 ± 0.006	0.315	0.100	0.65	0.32	
2	Co-60	P02	0.0682 ± 0.0045	0.205	0.0647	0.95	0.32	
— ウ		P03	0.0417 ± 0.005	0.148	0.0630	1.5	0.43	
		P01	0.314 ± 0.009	0.190	0.135	0.43	0.71	
-	Ni-63	P02	0.119 ± 0.009	0.118	0.0986	0.83	0.84	•
		P03	0.0588 ± 0.005	0.117	0.107	1.8	0.91	
	H-3	P03	< 0.0016	0.421	0.173	>108	0.41	
	Co-60	P01	3.38 ± 0.07	7.91	3.09	0.91	0.39	
		P02	1.45 ± 0.03	4.88	1.97	1.4	0.40	
炭		P03	0.785 ± 0.019	4.50	1.35	1.7	0.30	
素		P01	0.588 ± 0.019	0.990	0.364	0.62	0.37	
	Ni-63	P02	0.258 ± 0.016	0.625	0.256	0.99	0.41	
		P03	0.0727 ± 0.0086	0.414	0.162	2.2	0.39	
E	Eu-152	P03	<0.077	0.0820	0.0347	>0.45	0.42	
		P01	9.91 ± 0.01	23.0	7.95	0.80	0.35	
_	H-3	P02	4.79 ± 0.01	15.5	5.69	1.2	0.37	
		P03	1.136 ± 0.003	6.05	3.60	3.2	0.60	
ノ ケ		P01	1.13 ± 0.02	1.92	0.890	0.79	0.46	
	Co-60	P02	0.518 ± 0.01	1.26	0.617	1.2	0.49	
) ソ I		P03	0.18 ± 0.002	0.958	0.383	2.1	0.40	
 		P01	1.38 ± 0.02	1.97	0.690	0.50	0.35	
' E	Eu-152	P02	0.536 ± 0.01	1.32	0.577	1.1	0.44	
		P03	0.116 ± 0.002	0.647	0.328	2.8	0.51	

/親元素の設定が実
際の元素分析の結果
より小さく、過少評価
されている可能性が
あるもの

✓親元素が検出限界 値で、文献等のデー タに比べて高いため 文献等のデータを用 いたもの

冷却水領域での中性子スペクトル

R =63.6 cm (@炉心高さ)

JSSTDL-J32では、熱中性子束領域の群数が少ないために、正確に反映できていないところがある。