

Promoting Nuclear Innovation

Through Multi-layered International Cooperation among Public and Private Sectors

Nuclear Energy x Innovation Promotion (NEXIP) Program

Shinichi KIHARA

Deputy Commissioner for International Affairs
Agency for Natural Resources and Energy
Ministry of Economy, Trade and Industry of Japan

Nuclear Energy in the 5th Strategic Energy Plan (2018)

Towards 2030: Achievement of Optimal Energy-Mix Target

Nuclear is an important baseload power source

- Safety first. Only when approved by NRA's strict safety reviews, NPPs will restart.
- With a principle of minimizing dependence on nuclear, achieving 20-22% nuclear by 2030.

Towards 2050: Challenges for Energy Transition/De-carbonization

Nuclear is one option for energy de-carbonization

- Need to strengthen human resources, technologies and the industrial base
- Pursue safe, economically efficient and flexible reactor systems and development of back-end technologies

Discussion on 6^h Strategic Energy Plan has kicked off (Oct. 2020)

Potential Needs for Nuclear Technology R&D

Non-proliferation

- Strengthened security
- Responding to the demand from emerging countries

Safety

- Updating safety standards, e.g. against natural hazards
- Passive safety features, including those of inherent characteristics

Radioactive Waste Management

 Long-term reduction in volume and toxicity-level of high-level radioactive wastes

Multi-purpose Use

 Various nuclear power applications; e.g. hydrogen production and heat utilization

Flexibility/Mobility

- Adaptation to a new energy market situation in which renewables constitute a majority
- Distributed/mobile power sources

Economic Efficiency

- Capital cost reduction innovation
- Continuous improvement of existing technologies, e.g. shortening construction periods

Japan's Initiative to Accelerate Nuclear Innovation

NEXIP: Nuclear Energy × Innovation Promotion

Japan's initiative to help accelerate the development of innovative nuclear technologies in the private sector through funding support, access to R&D facilities and human resource development efforts.

1. Funding Support for R&D (Cost-shared Program)

- Feasibility studies of new reactor design concepts
- Associated technologies (e.g. safety, digital technologies, new types of fuels)

2. Access to R&D Facilities/Resources

- JAEA research facilities, reactors, and databases
- Collaboration with universities and the international communities

3. Human resource development

Pursuing Competition among Various Technologies

- Through <u>NEXIP</u> and other programs, METI supports various types of nuclear reactor technologies including international cooperation projects.
- The Japan Atomic Energy Agency (JAEA) possess important test facilities.

Small Modular LWR

- Smaller size, modular type
- Passive safety
- → ✓ Affordable capital cost √ Smaller EPZ

Fast Reactor

- Sodium-cooled reactor
- Fast neutrons
- **→** ✓ Effective use of resources
 - √ HLW management

High Temperature Gas-cooled Reactor

- Helium gas-cooled reactor (chemically stable)
- Coated particle fuel
- Very high temperature
- → ✓ Heat/hydrogen use
 - √ Smaller EPZ

Fast reactor R&D cooperation based on simulations and experiment

U.K.

High-temperature Gas-cooled Reactor

U.S.

Versatile Test Reactor (VTR) cooperation

International Cooperation

Joyo: Experimental Fast Reactor

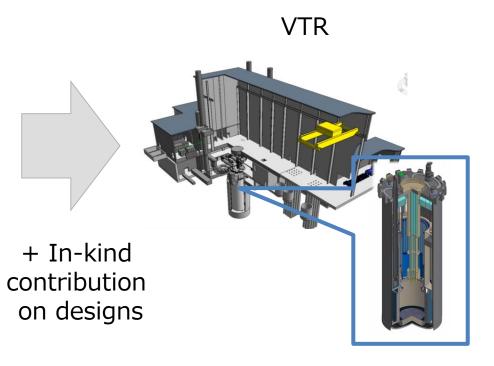
Experimental HTGR JAEA's Facilities

Japan's Contribution to VTR project

- Versatile Test Reactor (VTR) is a unique project targeting fast reactor construction in western nuclear countries.
 - MOC was signed between METI/MEXT-DOE in June 2019.
- Japan will contribute in several key areas, based on
 - Expertise & technologies on sodium experiments, and
 - Designs, fabrications, and constructions of Joyo and Monju

Joyo & Post-Irradiation Facility

Monju & Sodium Facility



Large-scale facilities for demonstration

Conclusions

- Advanced reactors have the potential to address future needs besides de-carbonization such as enhanced safety, flexibility, radioactive waste management, etc.
- Japan, among other countries, encourages competition among various advanced nuclear technologies through its cost-shared support program.

• METI supports:

- Joint efforts by JP-US private companies to develop innovative reactors under NEXIP program, and
- R&D collaboration by JAEA-INL/ANL on the VTR project, as well as potential contributions by private companies, based on the designs, fabrications, and constructions of Joyo and Monju reactors.

Thank you for your attention!

