Improvement of Long-term Proliferation Resistance

Joonhong Ahn

Professor and Vice Chair Department of Nuclear Engineering University of California, Berkeley

December 4, 2013

Panel discussion 2: Roles of safeguards and technical measures for ensuring nuclear non-proliferation for nuclear fuel cycle options

2013 International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-Proliferation and Nuclear Security, December 3-4, 2013 Jiji Press Hall, Tokyo

Japan's Used Fuel Balance (02/2013)

Stored at JNFL (Rokkasho)	3,350 MT
Stored at NPPs	14,170 MT
Overseas reprocessing	7,100 MT
Tokai reprocessing	1,020 MT
TOTAL	25,640 MT

- 1 Metric Ton (MT) of LWR Used Fuel
 - Has generated 0.05 GWyr(e)
 - Contains 10 kg of Np/Am/Pu
 - 9 kg of Plutonium, including 5 kg of Pu-239
 - 1 kg of Neptunium and Americium
 - Generates 1 canister of vitrified HLW

Diameter ~ 0.4 m, Height ~ 1.0 m Volume = 150 liter

Materials waiting for disposal

- HLW (including TRU wastes from reprocessing)
 - IAEA Safeguard inspection likely to be terminated due to low Pu content
- Used fuel (UO2 or MOX):
 - Subject to IAEA Safeguard inspection
- Pu stockpile
- Reprocessed U
 - Subject to IAEA Safeguard inspection
- Depleted uranium (DU)
 - Approximately 7 times more mass than fuels
 - Subject to IAEA Safeguard inspection
- Mill Tailings

Pu stockpile \rightarrow MOX \rightarrow Disposal

- Costly, but feasible
- Subject to IAEA Safeguard inspection for geological disposal
- Radiological safety of geological disposal
 - Higher TRU contents
 - Greater hear emission
 - Greater radiotoxicity
 - Higher heterogeneity in fuel

Advanced options for Pu inventory management

- Thermal neutron systems
 - High-Temperature Gas-Cooled Reactor (HTGR)
- Fast neutron systems
 - Fission reactors (SFR, IFR, ...)
 - Accelerator-driven system
 - Fusion
- Deep bore-hole disposal

HTGR as Pu Burner

- thermal efficiency > 40%
- 90 ~ 120 GWday/MT
- Reactor with Inherent safety
 - Negative reactivity coefficient with temperature (stops chain reactions)
 - Low power density and robust fuel forms (cools reactor core naturally)
 - No melt down
 - No significant radiation release in accident
 - Demonstrate with actual test of reactor
- Deep burn of Pu-239
 - > 90% of Pu-239 is burnt by once-through
 - Possibility for termination of IAEA safeguard inspection for geological disposal
- High durability of graphite-TRISO fuel in virtually any geological conditions
 - Relaxation of temperature constraints for engineered barriers in a geological repository (higher density, i.e. smaller footprint; simpler repository design)

Reduction of fissile Pu by TRISO-HTGR

		Inventro	y Per 1000kg	LWR-CS	SNF			
	LWR TRU		Fresh TRISO	Once Through			Twice Through	
Nuclide	w/o	kg	w/o	kg	w/o	kg	w/o	kg
237Np	4.68	0.468	5.2	0.468	7.7	0.231	4.4	0.044
238Pu	1.35	0.135	1.5	0.135	6	0.18	10.3	0.103
239Pu	51.3	5.13	57	5.13	3.2	0.096	0.1	0.001
240Pu	20.7	2.07	23	2.07	27.8	0.834	7	0.07
241Pu	7.47	0.747	8.3	0.747	21	0.63	5	0.05
242Pu	4.5	0.45	5	0.45	26.5	0.795	35	0.35
241Am	8.18	0.818	0	0	1	0.03	3.3	0.033
242mAm	0.03	0.003	0	0	0.1	0.003	0.5	0.005
243Am	1.48	0.148	0	0	5.3	0.159	16.7	0.167
244Cm	0.29	0.029	0	0	1.3	0.039	16	0.16
245Cm	0.02	0.002	0	0	0.1	0.003	1.7	0.017
Total	100	10	100	9	100	3	100	1
Energy	35.61				5.92		2.63	
Produced MWyr(e)								
Cumulative	35.61				41.53		44.16	
Energy MWyr(e)								

Time After Emplacement in YMR (years)

HTGR Deployment

- In an HTGR core, 1.27 MT-(PuAmNp), or 1.13 MT-Pu
 - 5 regions shuffled with a cycle of 300 days
 - 0.2 MT-Pu/year/reactor is consumed.
 - 1GWyr LWR generates 20 MT used fuel, containing 0.2 MT-Pu
- Construction cost ~ \$2,000/kW(e)
 - For a 600MW(th) plant with 50% efficiency (300MW(e)), \$ 600 Million
 - 20 reactors → \$12 Billion (1.2兆円)
- Power generation cost ~ 4 cent/kWh(e)

SFR as U burner (or Pu breeder)

- RepU and DU in the blanket \rightarrow Pu.
- It increases short-term proliferation concern.
 - Creating Stockpile
 - Increasing interest in Pu breeding in emerging countries (technology proliferation)

HTGR vs. SFR

- Both the HTGR (utilizing thermal neutrons) and the SFR (utilizing fast neutrons) can destroy Pu, Np and Am. However, the quality of destruction is different.
- The HTGR can burn:
 - rapidly due to high cross sections with thermal neutrons,
 - deeply due to very high fuel burnup thanks to high material durability, but
 - somewhat incompletely due to unfavorable fission-to-capture ratios.
- The SFR can burn:
 - slowly due to small cross sections with fast neutrons,
 - lightly due to relatively low burnup particularly with metal fuel, but
 - completely due to favorable fission-to-capture ratios.
- Thus, it will be ideal to construct a system that integrates both types of reactors.

Accelerator-driven system

- Suitable for small mass flow (minor actinides)
 - E.g. ATW for Pu+MA after UREX (60 cores for 60 years)
- Double strata fuel cycle
 - Pu cycle as the primary
 - MA cycle as the secondary. ADS is applied for this.
 - 1 ADS for 6 ~ 10 GW
 - MA stockpile issue
 - Thus, not available for all countries
- International fuel cycle is inevitable.

Deep bore-hole disposal

- No retrievability
 - High proliferation resistance
- Epistemic uncertainty
 - Criticality safety
 - Radiological safety
- Suitable for disposal of long-lived FP and U, but not of TRU.

Couplings observed in spent fuel management

- Short term (fuel cycle) vs. Long term (disposal)
 - − Short term → Long term
 - Overall long-term *performance* is dependent on short-term options.
 - − Long term → Short term
 - Without a plan for repository siting, implementation of short-term options is difficult due to lack of public trust and confidence.
- Domestic vs. International
 - − Domestic → International
 - Failure in consuming recovered fissile materials may cause international skepticism.
 - International
 Domestic
 - International and bilateral treaties define framework for fuel-cycle options.
 - E.g., US-Japan 123 agreement negotiation by 2018

Long term

Radiological performance
of repository

Radiological performance of fuel cycle

Proliferation resistance of a geological repository

International competitiveness and influence

Domestic

Recovery of investment; National wealth International

Bilateral relations with US (and others)

Options

• Option (0) : Full-fledged fuel cycle

- Maintain the same fleet capacity (e.g., 50 LWRs equivalent; includes FBRs)
- PUREX (U, Pu recovered)
- Recovery of TRU for transmutation
- Disposal: HLW vitrified waste (legacy + future)
- Option (IV) : Phase out immediately
 - Disposal: HLW vitrified waste (legacy), Pu stockpile, Spent fuel including MOX, Recovered U

Options

• Option(I)

- Fleet capacity that can be accommodated by Rokkasho capacity
- Old reactors replaced as needed
- PUREX (U, Pu recovered)
- MOX
- Disposal: HLW vitrified waste (legacy + future), MOX SF, Recovered U
- Option(II)
 - Fleet capacity that can be accommodated by Rokkasho capacity
 - No LWR replacement; HTGR
 - PUREX (U, Pu recovered)
 - TRISO
 - Disposal: HLW vitrified waste (legacy), TRISO, Recovered U

- Option(III)
 - No replacement of reactors
 - No reprocessing
 - Legacy Pu is made into MOX and used in remaining LWRs
 - Disposal: HLW vitrified waste (legacy), MOX SF, Spent fuel, Recovered U

Closing remarks

- Coupling between long-term and short-term proliferation risk is observed.
- Choose options flexibly, as the international and domestic environment evolves.
- International fuel cycle system is inevitable to reduce long-term proliferation risks.