
Improvement of Long-term 
Proliferation Resistance 

Joonhong Ahn 
Professor and Vice Chair 

Department of Nuclear Engineering 
University of California, Berkeley 

 
December 4, 2013 

Panel discussion 2: Roles of safeguards and technical measures for ensuring 
nuclear non-proliferation for nuclear fuel cycle options 

 
2013 International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-

Proliferation and Nuclear Security, December 3-4, 2013 
Jiji Press Hall, Tokyo 



Japan’s Used Fuel Balance (02/2013) 
Stored at JNFL (Rokkasho) 3,350 MT 
Stored at NPPs 14,170 MT 
Overseas reprocessing 7,100 MT 
Tokai reprocessing 1,020 MT 
TOTAL 25,640 MT 

Vitrified HLW 
Pu 
RepU 

• 1 Metric Ton (MT) of LWR Used Fuel 
– Has generated 0.05 GWyr(e) 
– Contains 10 kg of Np/Am/Pu 

• 9 kg of Plutonium, including 5 kg of Pu-239 
• 1 kg of Neptunium and Americium 

– Generates 1 canister of vitrified HLW Diameter ~ 0.4 m,  
Height ~ 1.0 m 
Volume = 150 liter 



Materials waiting for disposal 
• HLW (including TRU wastes from reprocessing) 

– IAEA Safeguard inspection likely to be terminated due 
to low Pu content 

• Used fuel (UO2 or MOX):  
– Subject to IAEA Safeguard inspection 

• Pu stockpile 
• Reprocessed U 

– Subject to IAEA Safeguard inspection 
• Depleted uranium (DU) 

– Approximately 7 times more mass than fuels 
– Subject to IAEA Safeguard inspection 

• Mill Tailings 



Pu stockpile  MOX  Disposal 

• Costly, but feasible 
• Subject to IAEA Safeguard inspection for 

geological disposal 
• Radiological safety of geological disposal 

– Higher TRU contents 
• Greater hear emission 
• Greater radiotoxicity 
• Higher heterogeneity in fuel 



Advanced options for Pu inventory 
management 

• Thermal neutron systems 
– High-Temperature Gas-Cooled Reactor (HTGR) 

• Fast neutron systems 
– Fission reactors (SFR, IFR, …) 
– Accelerator-driven system 
– Fusion 

• Deep bore-hole disposal 



HTGR as Pu Burner 
• thermal efficiency > 40% 
• 90 ~ 120 GWday/MT 
• Reactor with Inherent safety 

– Negative reactivity coefficient with temperature (stops chain reactions) 
– Low power density and robust fuel forms (cools reactor core naturally) 

• No melt down  
• No significant radiation release in accident 

– Demonstrate with actual test of reactor 
• Deep burn of Pu-239 

– > 90% of Pu-239 is burnt by once-through 
– Possibility for termination of IAEA safeguard inspection for geological disposal 

• High durability of graphite-TRISO fuel in virtually any geological conditions 
– Relaxation of temperature constraints for engineered barriers in a geological 

repository (higher density, i.e. smaller footprint; simpler repository design) 



Reduction of fissile Pu by TRISO-HTGR 
Inventroy Per 1000kg LWR-CSNF

LWR TRU Fresh TRISO Once Through Twice Through
Nuclide w/o kg w/o kg w/o kg w/o kg
237Np 4.68 0.468 5.2 0.468 7.7 0.231 4.4 0.044
238Pu 1.35 0.135 1.5 0.135 6 0.18 10.3 0.103
239Pu 51.3 5.13 57 5.13 3.2 0.096 0.1 0.001
240Pu 20.7 2.07 23 2.07 27.8 0.834 7 0.07
241Pu 7.47 0.747 8.3 0.747 21 0.63 5 0.05
242Pu 4.5 0.45 5 0.45 26.5 0.795 35 0.35
241Am 8.18 0.818 0 0 1 0.03 3.3 0.033
242mAm 0.03 0.003 0 0 0.1 0.003 0.5 0.005
243Am 1.48 0.148 0 0 5.3 0.159 16.7 0.167
244Cm 0.29 0.029 0 0 1.3 0.039 16 0.16
245Cm 0.02 0.002 0 0 0.1 0.003 1.7 0.017
Total 100 10 100 9 100 3 100 1

Energy 35.61 5.92 2.63
Produced MWyr(e)

Cumulative 35.61 41.53 44.16
Energy MWyr(e)



TRISO SF 
Disposal in 

YMR 



HTGR Deployment 

• In an HTGR core, 1.27 MT-(PuAmNp), or 1.13 MT-
Pu 
– 5 regions shuffled with a cycle of 300 days 
– 0.2 MT-Pu/year/reactor is consumed. 

• 1GWyr LWR generates 20 MT used fuel, containing 0.2 MT-
Pu 

• Construction cost ~ $2,000/kW(e) 
– For a 600MW(th) plant with 50% efficiency 

(300MW(e)), $ 600 Million 
– 20 reactors  $12 Billion (1.2兆円） 

• Power generation cost ~ 4 cent/kWh(e) 



SFR as U burner (or Pu breeder) 

• RepU and DU in the blanket  Pu. 
• It increases short-term proliferation concern. 

– Creating Stockpile 
–  Increasing interest in Pu breeding in emerging 

countries (technology proliferation) 



HTGR vs. SFR 
• Both the HTGR (utilizing thermal neutrons) and the SFR (utilizing 

fast neutrons) can destroy Pu, Np and Am. However, the quality of 
destruction is different.  

• The HTGR can burn: 
– rapidly due to high cross sections with thermal neutrons,  
– deeply due to very high fuel burnup thanks to high material durability, 

but  
– somewhat incompletely due to unfavorable fission-to-capture ratios.  

• The SFR can burn:  
– slowly due to small cross sections with fast neutrons,  
– lightly due to relatively low burnup particularly with metal fuel, but  
– completely due to favorable fission-to-capture ratios.  

• Thus, it will be ideal to construct a system that integrates both 
types of reactors.  



Accelerator-driven system 

• Suitable for small mass flow (minor actinides) 
– E.g. ATW for Pu+MA after UREX (60 cores for 60 years) 

• Double strata fuel cycle  
– Pu cycle as the primary 
– MA cycle as the secondary. ADS is applied for this. 

• 1 ADS for 6 ~ 10 GW 
• MA stockpile issue 

– Thus, not available for all countries 
• International fuel cycle is inevitable. 
 



Deep bore-hole disposal 

• No retrievability 
– High proliferation resistance 

• Epistemic uncertainty 
– Criticality safety 
– Radiological safety 

• Suitable for disposal of 
long-lived FP and U, but 
not of TRU. 



Couplings observed in spent fuel 
management 

• Short term (fuel cycle) vs. Long term (disposal) 
– Short term  Long term 

• Overall long-term performance is dependent on short-term options.  
– Long term  Short term 

• Without a plan for repository siting, implementation of short-term 
options is difficult due to lack of public trust and confidence. 

• Domestic vs. International 
– Domestic  International 

• Failure in consuming recovered fissile materials may cause 
international skepticism. 

– International  Domestic 
• International and bilateral treaties define framework for fuel-cycle 

options. 
– E.g., US-Japan 123 agreement negotiation by 2018 
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Options 
• Option（0）：Full-fledged fuel cycle 

– Maintain the same fleet capacity (e.g., 
50 LWRs equivalent; includes FBRs) 

– PUREX (U, Pu recovered) 
– Recovery of TRU for transmutation 
– Disposal: HLW vitrified waste （legacy 

+ future） 

• Option（IV）：Phase out 
immediately 
– Disposal：HLW vitrified waste 

（legacy）, Pu stockpile, Spent fuel 
including MOX, Recovered U 
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• Option（I） 
– Fleet capacity that can be 

accommodated by Rokkasho 
capacity 

– Old reactors replaced as needed 
– PUREX (U, Pu recovered) 
– MOX 
– Disposal：HLW vitrified waste 

（legacy + future）, MOX SF, 
Recovered U 

• Option（II） 
– Fleet capacity that can be 

accommodated by Rokkasho 
capacity 

– No LWR replacement; HTGR 
– PUREX (U, Pu recovered) 
– TRISO 
– Disposal：HLW vitrified waste 

（legacy）, TRISO, Recovered U 

Options 

 

• Option（III） 
– No replacement of reactors 
– No reprocessing 
– Legacy Pu is made into MOX and 

used in remaining LWRs 
– Disposal：HLW vitrified waste 

（legacy）, MOX SF, Spent fuel, 
Recovered U 
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Option (I) 
(LWR+PUREX+MOX) 

best 

worst 

2nd 

3rd 
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Option (IV) 
(Immediate phase out) 
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Closing remarks 

• Coupling between long-term and short-term 
proliferation risk is observed. 

• Choose options flexibly, as the international 
and domestic environment evolves. 

• International fuel cycle system is inevitable to 
reduce long-term proliferation risks. 

 


