

Sharon Squassoni Senior Fellow & Director Proliferation Prevention Program

2012 International Forum on Nuclear Energy, Nuclear Non-Proliferation and Nuclear Security Japan Atomic Energy Agency December 12-13, 2012, Tokyo

CSIS CENTER FOR STRATEGIC & INTERNATIONAL STUDIES

Proliferation Prevention Program

OUTLINE

- Proliferation and security risks
 - o Reprocessing
 - o Disposal

How to ensure nonproliferation & nuclear security for • direct disposal of SNF on a long-term basis?

Issue is Plutonium

8.5kg = enough to make a nuclear weapon (or less)

CENTER FOR STRATEGIC & INTERNATIONAL STUDIES

CSIS

- This amount is roughly what is produced in the core of a large nuclear power reactor
- In SNF, it is relatively secure, diluted with 100x as much uranium and mixed with highly radioactive fission products. The gamma radiation barrier is lethal for about 100 years
- Without radiation barrier, main danger is inhalation.
- So, it matters what form plutonium takes.

Bottom line:

- Direct disposal generally viewed by nonproliferation community as most proliferationresistant approach to spent fuel
 - Plutonium remains in fuel, with radiation barriers
 - Efforts to "divert" would be costly, take time
- But, risks increase over time (>100 years) because radiation barriers ("self-protection") decrease
 - "Plutonium mine"

What are proliferation risks?

- In general, that material/equipment/facilities will be used for non-peaceful/explosive purposes
 - Diversion of declared material at declared facilities
 - Use of declared facilities to produce undeclared material
 - Undeclared facilities, activities

CSIS

Nuclear security risks at back end

- IAEA (Pub 1481 Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities):
 - Risk of unauthorized removal with the intent to construct a nuclear explosive device;
 - Risk of unauthorized removal which could lead to subsequent dispersal;
 - Risk of sabotage.
- Concern is terrorist access to material, or sabotage of facilities. At back end, transport a particular concern.

How to assess?

- Sophisticated methodologies available, but in general, look at:
 - Material attractiveness how much effort is needed to make it weapons-usable (or into an effective RDD)? Can that effort be detected? This will be different for states vs. terrorists
 - Ease of monitoring Can a diversion be detected in a timely fashion? Are we counting flows of material or discrete items?

Proliferation **Prevention Program**

Spent fuel pathways

DIRECT DISPOSAL	REPROCESSING	MIX (PARTIAL REPROCESSING)
At reactor	At reactor	At reactor
Away-from-reactor	?	Away-from-reactor
Centralized, interim storage	?	Centralized, interim storage
	Reprocessing	Reprocessing
	Fuel Fabrication (MOX)	Fuel Fabrication (MOX)
Repository for SNF	Repository for MOX SNF & HLW	Repository for SNF, MOX SNF & HLW

Proliferation/security risks of materials, facilities

	Materials	Proliferation + security risks
At reactor	Irradiated fuel bundles	Self-protection = lesser risk of diversion, unauthorized removal, undeclared activities. Risk of sabotage mixed
Away-from-reactor/ Interim Storage	Irradiated fuel in dry casks	Self-protection = lesser risk of diversion, unauthorized removal, undeclared activities. Lesser risk of sabotage
Reprocessing	In-process material Separated plutonium	Risks of diversion, misuse of declared facilities, undeclared facilities, unauthorized removal, sabotage
Fuel Fabrication (MOX)	Separated plutonium Fabricated fuel	Risks of diversion, misuse of declared facilities, undeclared facilities, unauthorized removal, sabotage
Repository for SNF	Self-protecting irradiated fuel bundles	Self-protection declines after 100 years. A repository for just HLW has nuclear security risks but no proliferation risks.

CSIS

Proliferation risks of back-end choices

- Reprocessing & fuel fabrication facilities pose risks of bulk-handling facilities
 - Misuse of facility (material unaccounted for)
 - Diversion of material
 - Diversion to an unsafeguarded facility
- SNF storage and direct disposal easier (bundle counting) but direct disposal of spent fuel in a repository has other risks
 - Radiation barrier declines over time, making a repository a "plutonium mine"

CENTER FOR STRATEGIC & INTERNATIONAL STUDIES

CSIS

Proliferation Prevention Program

Decay of spent PWR fuel over time (Source: IPFM,

"Managing Spent Fuel from Nuclear Power Reactors: Experience and Lessons from Around the World," September 2011)

Other recycling considerations

• "Burner" vs. Breeder Fast Reactors

CSIS

CENTER FOR STRATEGIC & INTERNATIONAL STUDIES

- Current concept is to burn up transuranics as fuel (which produce most heat after 100 years)
- Advantages: Improve proliferation resistance (marginally) by not fully separating Pu from fission products. Full recycle could reduce risk of repository as a Pu mine
- Disadvantages: TIME & MONEY

Political challenges of the back end

- No international consensus on a few relevant issues
 - How long is "long-term" storage 50, 100 years?
 - What is "waste" is SNF asset or liability?
 - What are costs?

CSIS

• Huge political hurdles for repositories

- Siting is biggest
- Questions about retrievability; monitoring; phased management

CSIS

Ensuring nonproliferation & security for direct disposal in the long-term

- No geological repository for commercial SNF has yet opened
- Main challenge for nonproliferation and security will be how to prevent access after several hundred years (will we forget how to make nuclear weapons by then?)
 - Would multilateral/multinational or international management/ownership be helpful?
- But this challenge pales in comparison to getting a few repositories open

Proliferation **Prevention Program**

Contact information

Proliferation Prevention Program @ www.csis.org

ssquassoni@csis.org

202 775-3293

