

PR&PP Collaborative Study with GIF System Steering Committees

A Compilation of Design Information and Crosscutting Issues Related to PR&PP Characterization

Presented at

Workshop on PR&PP Evaluation Methodology for Gen IV Nuclear Energy Systems

> Tokyo, Japan 22 February, 2011

Background

- The Generation IV International Forum has stated four goals to assess performance of GIF nuclear energy systems:
 - proliferation resistance and physical protection
 - sustainability
 - economics
 - safety and reliability
- The PR&PP Methodology developed by the Proliferation Resistance and Physical Protection Working Group provides a comprehensive framework and guidance for carrying out a system evaluation with regard to PR&PP performance.
- In order to facilitate the timely introduction of PR&PP characteristics into the design process, a collaborative effort was initiated in 2007 between the GIF System Steering Committees and the PRPPWG.

Objectives and Scope

- Generate preliminary information about the PR&PP merits of Gen IV systems and recommend directions for optimizing their PR&PP performance
 - Capture the current salient features of the GIF system design concepts that impact their PR&PP performance
 - Identify crosscutting studies to assess PR&PP design or operating features common to various GIF systems
 - Suggest beneficial characteristics of the design of future nuclear energy systems.

Evolution of PRPPWG/SSC Collaborative Study

- Discussions on PRPP/SSC cooperation initiated in 2007
- Workshops May 2008, July 2009, and January 2010
- PR&PP-focused Gen IV System White Papers
- Compendium Report incorporating the six System White Papers and sections on cross-cutting issues

Organization of White Papers

- Overview of Fuel Cycle Element Options
- Current Technology Status
- Proliferation Resistance Considerations
 - Concealed diversion or production of material
 - Breakout
 - Production in clandestine facilities
- Physical Protection Considerations
 - Theft of material for nuclear explosives
 - Radiological sabotage
- PR&PP Issues, Concerns and Benefits
- References

Overview of Gen IV Systems

System	Neutron spectrum	Coolant	Outlet Temperature °C	Refueling Mode	Fuel cycle	Size (MWe)
VHTR (very-high- temperature reactor)	thermal	helium	900-1000	On-site; Offline batch / Online continuous	open	250-300
SFR (sodium- cooled fast reactor)	fast	sodium	500-550	On-Site; Offline batch / Offline full core (Off-site)	closed	50-150 300-1500 600-1500
SCWR (supercritical water-cooled reactor)	thermal/fast	water	510-625	On-site; Offline batch / Online continuous	open/ closed	300-700 1000-1500
GFR (gas-cooled fast reactor)	fast	helium	850	On-site; Offline batch	closed	1200
LFR (lead-cooled fast reactor)	fast	lead	480-570	On-site; Offline batch / Offline full core (Offsite)	closed	10-100 300-1200 600-1000
MSR (molten salt reactor)	thermal/fast	fluoride salts	700-800	On-site; Online continuous	closed	1000

(Source: GIF 2009 Annual Report, http://www.gen-4.org/PDFs/GIF-2009-Annual-Report.pdf)

Very High-Temperature Reactor (VHTR)

- White paper described two basic design concepts of helium-cooled, graphite-moderated and reflected VHTR by fuel type.
- Prismatic VHTR:
 - Fuel is in the form of TRISO-coated fuel particles embedded in graphite blocks.
 - Five Prismatic VHTR concepts are currently under consideration. Two concepts examined are the GA GT-MHR and the Areva Modular HTR (both 600 MWt).
 - Batch mode refueling; accountancy is by item counting (visual ID of serial no.).
- Pebble Bed VHTR:
 - Fuel is in the form of TRISO-coated fuel particles compacted in small graphite spheres.
 Fissile content of each fuel sphere is very small.
 - Two example systems (both 200-250 MWt) are the South African PBMR and the Chinese HTR-PM.
 - Onload refueling; accountancy of spent fuel spheres is by bulk accountability.
- Baseline fuel cycle is once-through using LEU but with options to deep-burn TRU/MA and use thorium in fertile fuel particles.
- Intrinsic PR&PP attributes of VHTR:
 - Robust fuel
 - High burnup LEU fuel
- Reprocessing technologies not yet fully developed or demonstrated.

GEN International

Sodium-Cooled Fast Reactor (SFR)

- The white paper described three conceptual designs
 - Large Loop Configuration SFR JAEA SFR, 1500 MWe
 - Pool Configuration SFR KALIMER-600, 600 MWe
 - Small Modular SFR SMFR, 50 MWe
- Fuel cycle roles:
 - Transmuter (consumes transuranics)
 - Converter (conversion ratio near 1)
 - Breeder
- SFRs are intended for utilization in a closed fuel cycle.
- Fuel types:
 - Oxide (TRU-MOX)
 - Metal (U-TRU-Zr)
 - Nitride (MN) or Carbide (MC)
- Fresh fuel (FF) contains TRU but low in radioactivity.
- Spent fuel contains similar fissile content as FF but has significant heat load and radioactivity.
- Spent blanket (in converter and breeder) has relatively low burnup and high quality Pu.
- Recycling negates need for enrichment technology.
- Increased burnup in SFR reduces frequency of refueling.
- Refueling is complicated and requires inert atmosphere.
- Non-proliferation aspects of the closed fuel cycle (including fuel reprocessing technology and potential for separation of Pu) is a key issue for the SFR.
- Fuel cycle technology R&D is outside Gen-IV SFR scope

Supercritical Water Reactor (SCWR)

- White paper described two reactor concepts, but their development has not progressed sufficiently to enable a meaningful discussion of PR&PP issues, concerns and benefits.
- Pressure vessel concept:
 - European HPLWR is a thermal reactor similar to BWR in PR&PP attributes.
 - Batch refueling limits access to core but more attractive spent fuel (fewer items per SQ and variable burnup).
- Pressure tube concept:
 - Light water cooled and heavy water moderated
 - Onload refueling requires more rigorous accountability of fuel movement but less attractive spent fuel (more items per SQ and more uniform burnup).
- Thermal option:
 - UO₂ fuel in a once through fuel cycle
 - Fuel enrichment up to 6%
 - Exit burnup up to 60 GWd/tHM
- Fast option:
 - MOX fuel with conventional U-Pu fuel cycle
 - Tight lattice core with high power density
 - Up to 120GWd/tHM burnup; small fast SCWR could run for 30 years without refueling
- Thorium option:
 - Considered for the pressure tube concept
 - Self-protection through gamma-emitting ²³²U
 - Difficult to separate fissile component ²³³U from non-fissile isotopes (denatured by ²³⁸U)

International

Gas-Cooled Fast Reactor (GFR)

- White paper described one 2400 MWt reference design, an indirect combined cycle with helium turbine (secondary gas cycle) plus a steam generator/turbine (tertiary cycle).
- Two fuel types pin with carbide fuel (oxide fuel as a backup) and honeycomb plate carbide or nitride fuel.
- GFR will operate in a closed fuel cycle using the GANEX process (separated uranium with all TRU recycled together).
- GFR fuel cycle is similar to that of the SFR with aqueous reprocessing and using depleted uranium and high Pu content MOX fuel.
- For GFR with breeding blankets potential to produce Pu using uranium targets.
- A guard vessel inside the containment building should provide additional physical protection for the primary system.
- Availability of shutdown cooling system is important for some accidents, in particular in depressurization accidents.

International

Lead Cooled Fast Reactor (LFR)

- The white paper described two conceptual designs:
 - Small Secure Transportable Autonomous Reactor (SSTAR), 19.8 MWe.
 - European Lead-Cooled SYstem (ELSY), 600 MWe.
- Fuel types and closed fuel cycle operation are similar to the SFR.
- SSTAR has a cassette type core that is replaced at end of core life (15-30 yr) by the reactor supplier.
- ELSY undergoes partial refueling every 15 months.
- By design, introduction of uranium target pins in the core or reflector region is either impossible or easy to detect.
- Simple system and robust design (e.g. low system pressure, high heat capacity of lead coolant, and small footprint) are advantageous for PP.
- R&D needs:
 - System layout (e.g. locating SSTAR underground).
 - Fuels, fuel reprocessing, core replacement (for SSTAR).
 - Detailed safety analysis.

International

Molten Salt Reactor (MSR)

- White paper discussed the MSR breeder option, the Molten Salt Fast Reactor (MSFR) design concept using the Th/²³³U fuel cycle with fluoride salts.
- Liquid fuel processing is part of the reactor.
- MSR has low fissile inventory per unit power output.
- Continuous reprocessing of the fuel salt and the introduction of makeup fuel create a fissile inventory outside the core.
- Fuel salt has high freezing temperature and its transfer from the reactor hot cell will be in solid form with strong radiation signature.
- To obtain 1 SQ of fissile material would require a large quantity of fuel salt because of low fuel concentration in the salt.
- Presence of ²³³U requires additional safeguards (having lower critical mass than ²³⁵U).
- Radiation from decay of ²³²U constrains handling of fuel but produces a visible signature for the detection of fissile material transport.
- Other MSR concepts, such as the MOSART (for actinide burning), still need to be considered.
- More design and safety studies will be needed before starting a PP evaluation.

Cross-cutting Topics [1]

- Fuel type
 - physical form
 - chemical form
 - isotopic composition
- Coolant, Moderator
- Refueling modes
 - Batch (periodic partial core replacement)
 - On-load (continuous)
 - Full core replacement (cassette type core)

Cross-cutting Topics [2]

- Fuel cycle architecture
 - thermal vs. fast neutron spectrum
 - U-Pu vs. Th-U fuel cycle
 - once-through vs. closed fuel cycle
 - burner vs. breeder, with or without blankets
 - co-located vs. centralized reprocessing
- Safeguards
 - Identify MBAs
 - Safeguards approaches for non-LWRs
 - MCP&A item vs. bulk
- Other GIF topics
 - Safety
 - Economics

Conclusion: Summary

- The SCCs and the PRPPWG have had fruitful engagements through interactions in three major workshops and co-development of PR&PP-focused System White Papers
- The three main objectives of this work are to:
 - capture features of the design concepts that impact their PR&PP performance;
 - identify crosscutting studies that assess PR&PP design or operating features common to various GIF systems;
 - suggest beneficial characteristics of the design of future nuclear energy systems.
- The Compendium Report incorporates the six System White Papers and sections on cross-cutting issues and will be helpful to system designers and program policy makers as they plan for the future maturation of the GIF design concepts.

Thank you...

Questions?