

(1) Back ground: Illicit nuclear traffickings reported

1

(2) Objectives

- * Determine attribution
- * Identify locality of nuclear materials, by analyzing samples taken from stolen materials, or at the scene of nuclear terrorism
- * Prosecute criminals
- * Enhance deterrence power

Nuclear Forensics Support Technical Guidance Reference Manual IAEA Nuclear Security Series No. 2

TABLE 2. SUGGESTED SEQUENCE FOR LABORATORY TECHNIQUES AND METHODS

Techniques/methods	24 hours	One week	Two months
Radiological	Estimated total activity Dose rate $(\alpha, \beta, \gamma, n)$ Surface contamination		
Physical	Visual inspection Radiography Photography Weight Dimensions Optical microscopy Density	SEM/EDS XRD	TEM (EDX)
Traditional forensic	Fingerprints, fibres		
Isotope analysis	γ spectroscopy α spectroscopy	Mass spectrometry (SIMS, TIMS, ICP-MS)	Radiochemical separation
Elemental/chemical		ICP-MS XRF Assay (titration, IDMS)	GC-MS

SEM/EDS: Scanning electron microanalysis with energy dispersive sensor; TEM: transmission electron microscopy; SIMS: secondary ion mass spectrometry; TIMS: thermal ionization mass spectrometry; ICP-MS: inductively coupled plasma mass spectrometry; XRF: X ray fluorescence analysis; IDMS: isotope dilution mass spectrometry; GC-MS: gas chromatography-mass spectrometry. (See Appendix II for further references.)

(3) Relevant radionuclide signature

Signature	Information revealed
In-growth of daughter isotopes	Chemical processing date
Pu isotope ratios	Enrichment of U used in Pu production Neutron spectrum and irradiation time in the reactor
Residual isotopes	Chemical processing techniques
Concentration of short lived fission product progeny	Chemical yield indicators

Ref.: Nuclear forensics support, IAEA (2006)

2 Pu isotopic composition and reactor types

(4) Impurity in uranium oxide

(5) Particle morphology

View field: 148.65 µm Det: SE Detector SEM HV: 30.00 kV Name: 58.jpg

VEGAN TESCAN

5 µm

.

Vega ©Tescan

CCR Itu

View field: 14.96 µm Det: SE Detector SEM HV: 30.00 kV Name: 60.jpg

VEGAN TESCAN

SEM images of U_3O_8 particles

50 µm

1522/2 1523/2 1524

SEM image of UF₄ particles

(5) Flow diagram of Nuclear Forensics Analysis

"Nuclear Forensics' role in analyzing nuclear trafficking activities", Institute for Transuranium Elements (ITU), Karlsruhe, Germany, 2006