iDAVE Web Application

Theory and Application of the Internet Discriminant Analysis Verification Engine for the U-Sourcing Database Project

Martin Robel 02 June, 2010 Lawrence Livermore National Laboratory

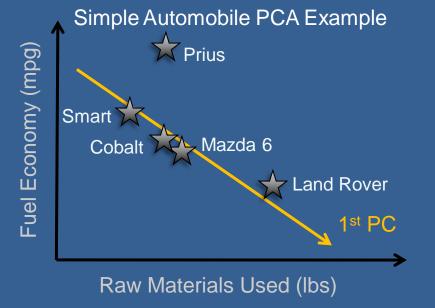
LLNL-PRES-428127

Introduction

- *iDAVE* (Internet Discriminant Analysis Verification Engine)
- Secure web application
- Predict the source of nuclear material based on its chemical and isotopic concentrations.
- *iDAVE* applies Partial Least Squares –Discriminant Analysis (PLS-DA) using data stored in a database.

Many methods of multivariate classification to chose from

- For example:
 - PCA (principal components analysis)
 - LDA (linear discriminant analysis)
 - KNN (k-nearest neighbor)
 - CART (classification and regression tree)
 - PLS-DA (partial least squares –discriminant analysis)
- Different problems require different tools.
- We chose PLS-DA because it has proven most effective for our data and goals.

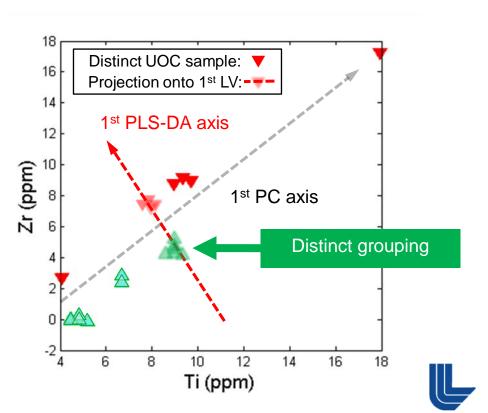


Principal Components Analysis (PCA) reduces dimensions while retaining maximum information (variance)

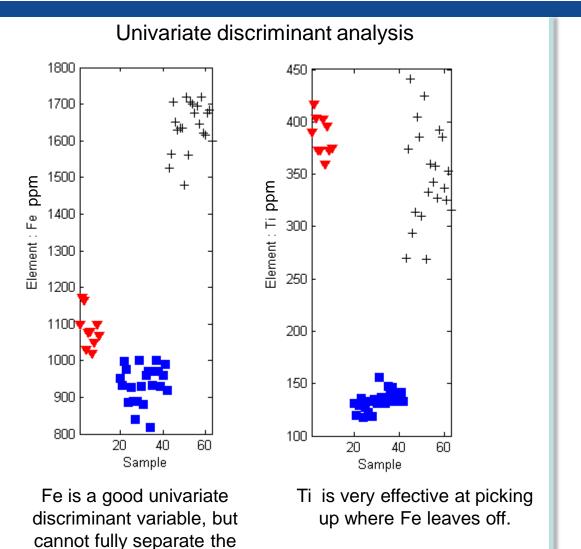
- PCA exploits correlation in multidimensional data
- The basic approach:
 - 1st PC: "If you could have only one dimension to *describe* a distribution (in n-dimensions), which would you chose?"
- 1st PC: captures greatest variance

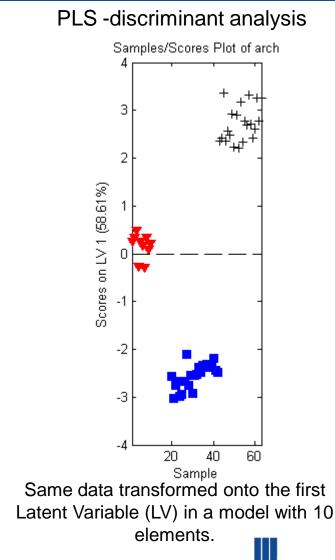
Automotive example:


1st PC (Latent Variable 1) = Environmental Impact


PLS-DA is more appropriate for the classification problem.

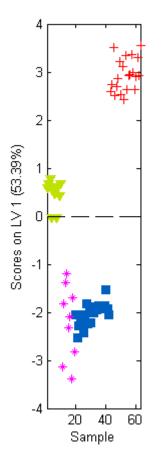
- The basic approach:
 - 1st Latent Variable (LV) axis: "If you could have only one dimension to tell two distributions (groups) apart, ..."
 - Conceptually similar to PCA, but different criteria: maximize ratio of between group variance to within group variance
 - 2nd LV orthogonal to 1st
- PCA is optimized for describing
- PLS-DA is optimized for discriminating



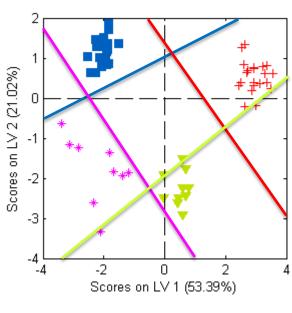

PLS-DA is more appropriate for the classification problem.

- The basic approach:
 - 1st Latent Variable (LV) axis: "If you could have only one dimension to tell two distributions (groups) apart, ..."
 - Conceptually similar to PCA, but different criteria: maximize ratio of between group variance to within group variance
 - 2nd LV orthogonal to 1st
- PCA is optimized for describing
- PLS-DA is optimized for discriminating

PLS-DA example: obsidian archeological samples from different sources¹ Plotting raw data vs. plotting onto single reduced ("latent") dimension

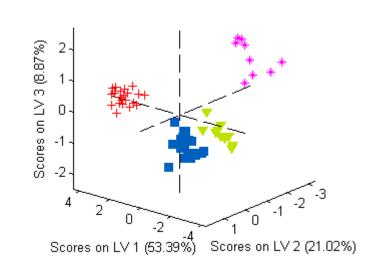

LLNL-PRES-428127

classes.


1. BR Kowalski, TF Schatzki, FH Stross. Classification of archaeological artifacts by applying pattern recognition to trace element data. Anal. Chem.; 1972; 44(13); 2176-2180.

PLS-DA example: obsidian archeological samples Multiple class discrimination

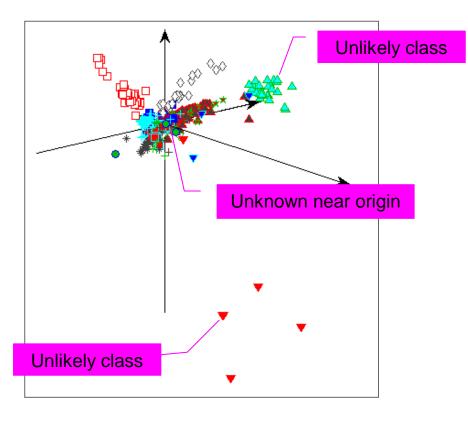
Single discriminant axis for 3 or more classes is often not enough



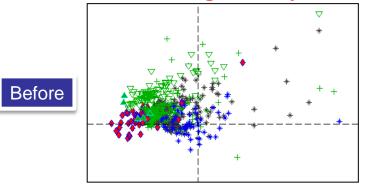
Decision lines in 2D space;

- 4 discriminant axes
- Orthogonal to decision lines.

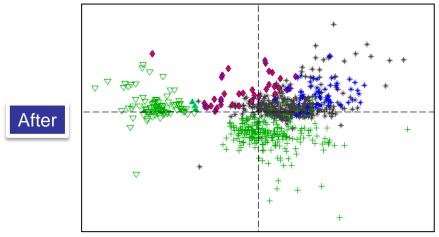
- 3D and decision planes
- 100% correct classification



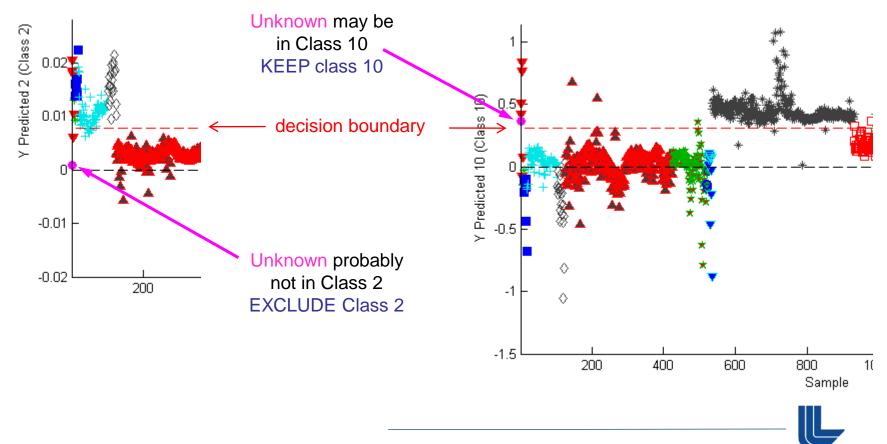
- 4D and above = hyperplanes
- Hard to visualize
- Math is the same



Challenges of UOC data and iterative solution


Even with hyperplanes, highly overlapping UOC data does not separate out perfectly.

Subset of these data showing before and after removing unlikely classes


Subset of classes in model using all data

Same data in new model -unlikely classes removed

Implementing an objective criteria for iterative removal of outlier classes: achieving a repeatable, objective, and readily automated criteria for class exclusion.

- Test unknown for membership in each class separately
- Sources that have been definitively ruled out using the decision boundary are excluded from the next iteration.

In summary: how iDAVE uses PLS-DA iteratively

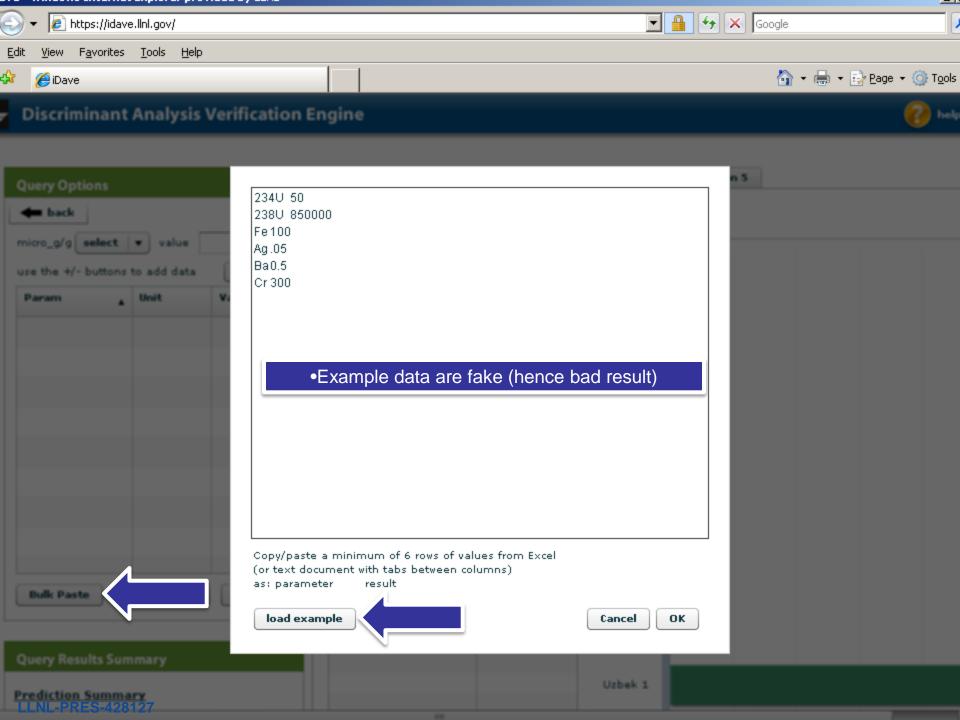
- 1. Build PLS-DA model using all available variables and sources.
- 2. For each class (source), test if unknown is more like that class or more like everything else using a modified Bayesian decision boundary.
- 3. Exclude "outlier" classes and rebuild model.
- 4. Repeat until single class conclusion.

Using iDAVE

- Two modes of operation
 - 1. "Query unknown"
 - Input values for your unknown and test it against the current reference database to see what it is most similar to.
 - 2. "Demo"
 - Perform an *internal validation* one sample at a time to see how well the current model performs for different sources/locations. This is typically referred to as Leave One Out (LOO) validation.

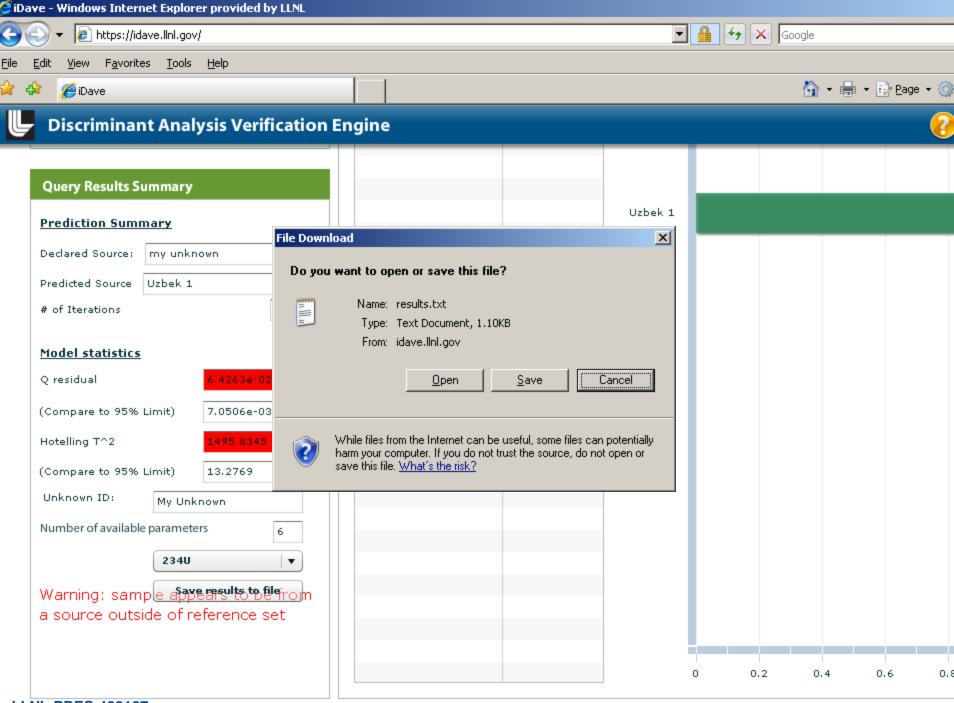
Interpreting results from iDAVE

- iDAVE gives what statisticians call a "prediction." This is a best guess based on available information.
- We are researching ways to characterize the level of confidence in the "prediction" generated by iDAVE in an appropriate and useful way.



Example using iDAVE to query an unknown sample

- Two ways to upload your data for query
 - One variable at a time (slow)
 - Bulk paste (recommended)


💪 iDave - Windows Internet Explorer provided by LLNL	
🕞 💽 👻 https://idave.llnl.gov/	🔽 🔒 😽 🗙 Google
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp	
🙀 🍄 🏉 iDave	🏠 - 🖶 - 🔂 Page - 🎯
Uiscriminant Analysis Verification Engine	•

Query Options	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	
Demo Query Unknown	Iteration 1 R	esults				
	Probability of			1.1		
	Source	F	robability			
Query Results Summary						
Prediction Summary						
Declared Source:						
Predicted Source						
# of Iterations						
<u>Model statistics</u>						
Q residual						
(Compare to 95% Limit)						
Hotelling T^2						
Compare to 95% Limit)						
Unknown ID:						
Number of available parameters						
NL-PRES-428127						

Uzbek 1		ogle	Page ▼
Uzbek 1			
0	0.2	0.4	0.6
	0	0 0.2	0 0.2 0.4

LLNL-PRES-428127

LLNL-PRES-428127

Results saved in .txt format

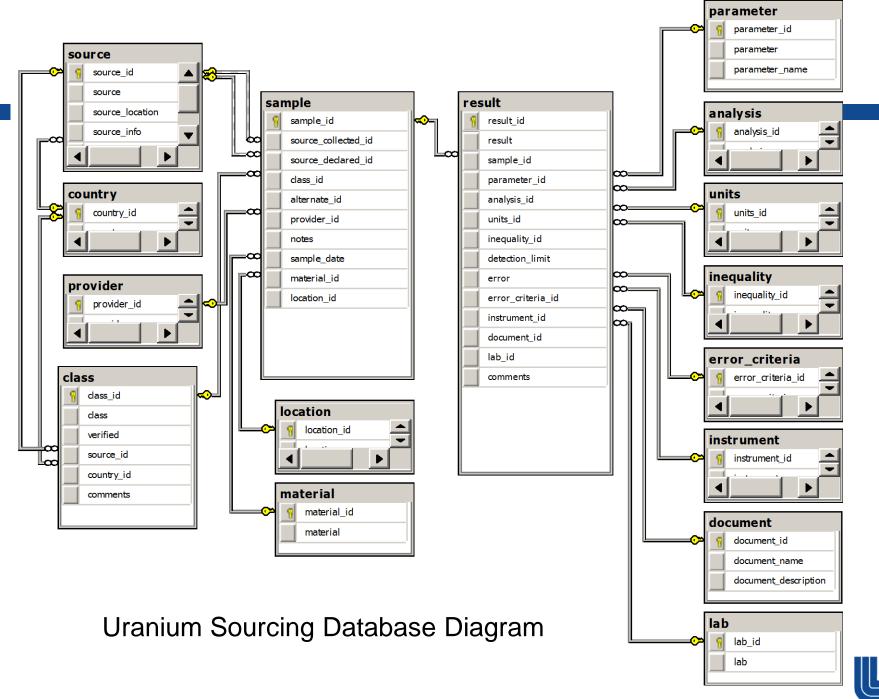
- 🗆 × 🐻 results.txt - Notepad File Edit Format View Help Unknown ID:My Unknown Number of available parameters:6 Available Parameters: 234U 2380 Ag Ba lcn. IF e Prediction Summary: Declared Source:my unknown Predicted Source:Uzbek 1 Iterations:4 Descriptive Statisticss: Q Residual for unknown relative to predicted source distribution:6.4263e-029 Q Residual at 95% confidence limit for predicted source distribution:7.0506e-031 Hotelling TA2 for unknown relative to predicted source distribution:1495.8345 Hotelling TA2 at 95% confidence limit for predicted source distribution :13.2769 Results at Each Iteration (Source: Probability): Iteration1 USA (Area 1):1 Canada (Area 1):0.79786 Canada (Area 2):0.50566 Canada (Area 3):0.26531 Canada (Area 4):0.1308 Australia (Area 1):0.91928 Australia (Area 2):0.44335 Australia (Area 3):0.15767 Kazakstan (Area 1):0.70537 Uzbek 1:0.17859 Namibia (Area 1):0.025798 Iteration2 USA (Area 1):1 Canada (Area 2):1 Australia (Area 1):0.7633 Australia (Area 3):1 Kazakstan (Area 1):1

Interpreting Results

- Descriptive statistics: Q residual and Hotelling's T²
 - Use these relative to 95% values. Not meaningful without context.
- Q residual
 - Measure of variation outside (i.e. not represented by) the model
- Hotelling's T²
 - Measure of variation within the modeled space (how unusual sample is in the space).
- Number of iterations
 - More iterations means more initial overlap of possible sources.

Interpreting Results

- iDAVE tests to see which reference source the unknown is most similar to.
- iDAVE will always make a prediction based on the assumption that the unknown is UOC from one of the reference sources.
- The user must rely on the descriptive statistics and other, uncorrelated information to assess the potential that the unknown is from some outside source.


Database statistics

U Sourcing Database

Samples:	1907
Sources:	111
Parameters currently measured:	65
(includes trace elements, isotopes, U-compound)	

Number of distinct results (measurements) : 62,041

LLNL-PRES-428127

iDAVE made possible by

<u>Vision</u>

- Ian Hutcheon
- Mike Kristo
- Technical development/support
- Martin Robel: MATLAB and database development
- Justin Shinn: Website development
- Greg White: Network and hardware
- And many others

Programmatic support

- NNSA NA-243, Office of Nuclear Verification
- This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

