

National Nuclear Forensics Libraries: A Suggested Approach for Country Specific Nuclear Material Databases

Stephen LaMont¹, John Wacker², Michael Kristo³, Michael Curry⁴, & Marcia Brisson⁵

¹Los Alamos National Laboratory ²Pacific Northwest National Laboratory ³Lawrence Livermore National Laboratory ⁴US Department of State ⁵US Department of Energy

Outline

- How libraries support the nuclear forensics process
- Types of libraries
 - International or National
- Proposed US approach for National Libraries
- Data dictionary development and description
- Summary

Nuclear Forensics

- Nuclear forensics, like conventional forensics, seeks to link people, places, things, and events
- Unlike conventional forensics, nuclear forensics also seeks to identify:
 - The material process history
 - The intended use of the material
 - The location where the material was produced
 - The pathway by which the material traveled

Signature Analysis and Forensic Interpretation

SIGNATURE ANALYSES

- Isotopics
- Major Elements
- Trace Elements
- Microstructure
- Morphology
- Age Dating
- Pathways Analyses

- Reveals patterns in technical nuclear forensics (TNF) data
- Resolves unanticipated and novel findings
- Enables signature discovery
- Links TNF signatures to processes, locations, facilities based on sound science

LA-UR-10-06586

Applications of Nuclear Forensics

- Law enforcement support for combating the illicit trafficking of nuclear material
 - Identification of material origin
 - Connecting individuals to an interdicted material
- Verification of international treaties and regimes
 - Use of material signatures to monitor adherence to declared operations
- Successful nuclear forensic analysis requires access to pertinent nuclear material data

Effective Nuclear Forensics Evaluations

- Nuclear forensics is a comparative science
 - Nuclear material characteristics from an unknown are compared to known material or process signatures
 - Can include both empirical and modeled data (eg. measured isotopics vs. calculated reactor burn-up)
 - Requires nuclear material production, characterization, and forensic evaluation expertise
- Centralized libraries for capturing nuclear material characteristics enable timely and accurate nuclear forensic assessments

Two Proposed Models for Libraries

- International nuclear material library
 - Countries would contribute data
 - Excellent deterrent to the theft, loss, diversion, and illicit trafficking of nuclear material
 - Set of mutually agreeable characteristics included in database very limited, and therefore of limited use for forensic assessments
 - More appropriate for strong MPC&A than forensics
 - Generally not acceptable to most countries
- National nuclear material libraries
 - Each country collects data on their domestic materials
 - Attractive alternative

National Library Advantages

- Tailored for each country's NM holdings
 - Simple, limited functionality libraries for countries with relative static, and small nuclear material inventories
 - Complex, searchable databases for countries with large quantities, variety, and frequent changes to inventory (eg. full or partial fuel cycle)
- Does not require transfer of sensitive or proprietary nuclear material characteristics
- Builds international confidence that countries would properly identify interdicted domestic material
- Deters illegal trafficking of nuclear material
 - Incentive for material producers and users to implement good
 MPC&A and address insider threat of material theft

Benefits for International Engagement

- National library design and implementation is a mechanism for international cooperation
 - Develop consensus for material characteristics important for inclusion in libraries
 - Opportunity to build confidence through technical exchange
 - Data query tools
 - Quality assurance
 - Process signature discovery
 - Encourages, but does not require cooperation during nuclear forensics investigations
 - Selective data or material exchanges

United States Status

- Suggested list of material characteristics for inclusion in libraries developed
 - "Material Characteristics Data Dictionary for Forensics Applications"
 - US Starting point for encouraging discussion
- Generic construct for a National Library based on the Data Dictionary developed
 - Transferrable to partner countries
 - Model for indigenous database development

Data Dictionary Development

- Complete list of nuclear material characteristics relevant to nuclear forensics
 - Over 250 parameters suggested that are beneficial for uniquely identifying and differentiating nuclear materials
 - Working document based on current understanding and knowledge
 - Not all characteristics are appropriate or available for all materials

Eight Categories of Dictionary Information

- Material Identity
- Analysis Laboratory
- 3. Material Packaging and Container
- 4. Sample or Item Physical Characteristics
- 5. Sample or Item Chemistry
- Sample or Item Morphology
- 7. Material Process or Location History
- 8. Data Vetting and Quality Assurance

Material Identity

LA-UR- 00-3849

Chemical Analysis of Plutonium-238 for Space Applications

Amy S. Wong

Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract. Los Alamos National Laboratory (LANL) has produced general-purpose heat sources (GPHS) containing plutonium-238 oxide for space and terrestrial uses over the past two decades. Power Source Technologies Group (NMT-9) has full capabilities to both recover and purify ²³⁸PuO₂ from scrap and aged fuels and to fabricate oxides into fuel pellets for heat sources.

Analytical chemistry supports processing monitoring and product certification for ²³⁸Pu operations. The ²³⁸Pu oxides are dissolved and submitted for plutonium assay (% Pu), actinide impurity (²³⁶Pu, ²³⁷Np, ²³⁴U, and ²⁴¹Am), plutonium isotopic composition, and non-actinide cationic and anionic impurities analyses. The data obtained from these measurements provide baseline parameters for processing, waste disposal, and product certifications.

Material identification

- Sample or object identifying numbers
- Collection location
- Current location
- Connections with other samples or materials
- Supporting information (pictures, reports, etc.)

Pu (III) Absorbance Spectra

nm

LA-UR-10-06586

Analysis Laboratory Information

- Sample splitting and analytical laboratory information
 - Chain of custody
 - Analyses performed at each facility

Date:	Los Alam	os National Laboratory		Batch #:		
Date.	LOS AIAIII	os National Laboratory		Batch #.		
	C-INC, C	Clean Chemistry Team				
Primary Chain of Custody						
COC Category =			Sub	omission Id:		
Sample Id	Sample Type	Sample Matrix	Container	Sample Date		
Relinquished to Custodian or Lock Box By (Sign, Date &Time):		Received from Custodian or removed from Lock Box by (Sign, Date & Time):				
Received for disposal: or Consumed In Analysis: Sign: Date:						
The following numbered Samples IDs have been returned for re-processing to:						
and the secondary COC has been completed.						
Sign:	1	Date:	Time:			

Material Packaging and Container Description

- Packaging / container serial numbers
- Physical container description, dimensions, and mass
- Dose rate information
- Other materials stored in the same container

Sample or Item Physical Characteristics

- Shape and dimensions
- Density
- Overall material use descriptions
 - eg. Fuel pellets, fuel pin or assembly cladding and dimensions

PHWR Fuel Pellet Dimensions*

Ø14,30mm **Double Dish Chamfered Pellet**

*R.N.Jayraj & C. Ganguly **IAEA-TECDOC-1416**

LA-UR-10-06586

Sample or Item Chemistry

- Chemical form
- Elemental composition
- Isotopic composition
- Minor and trace constituents
- Material age information (separation date, discharge date, etc.)
- Specific activity
- Fuel burn-up

IsotopX IsoprobeT **Thermal Ionization Mass** Spectrometer (TIMS)

Sample Chemistry Measurement Quality

- For each reported analysis:
 - Method used and reference
 - Calibration information
 - Uncertainty estimates and type
 - Supporting data QA and technical review

Performance on Isotope Ratio Blind QC Standards

Pu Isotopic Calibration	sotopic Calibration QC				
				Certified value	Certified Uncertainty
	n	^{240P} Pu/ ²³⁹ Pu	1σ		
CRM 138 (NBS 948)	11	0.08636	0.00036	0.08618	0.00011
CRM 126 (NBS949F)	13	0.02901	0.00013	0.02881	none

Sample Chemistry Example: ²⁴⁰Pu/²³⁹Pu

Parameter	Description	Value		
Analysis ID	Number or descriptor associated with analysis	ISOTEST251		
Material	Material description	PuO ₂ sample from reprocessed LWR fuel		
Analysis Date	Date analysis performed	05/23/2010		
Destructive Analysis Method	Analytical chemistry method (eg. TIMS, titration, etc.)	Radiochemistry + TIMS		
Isotope Ratio	²⁴⁰ Pu/ ²³⁹ Pu	0.26535		
Uncertainty	Method to evaluate uncertainty (GUM, 1 sigma, etc.)	0.00012		
Calibration Process	Brief summary, identify reference materials used and purpose	CRM 137 used for detector calibration; CRM 126-A used for mass bias correction		
Documents	References to analytical procedures, methods, pictures, spectra, etc.	Data reduction file ISOTEST251.xls attached. CC-SOP-31 "Determination of Pu Isotopic Ratios by TIMS" attached.		

Material Morphology

- Grain mean size
- Grain size histogram
- Shape description
- Homogeneity
- Aspect Ratio
- Inclusions
- Crystal Structure
- Porosity
- Friability

LA-UR-10-06586

Process and Location History

- Production facility name
 - Geographic coordinates

- Facility purpose (eg. enrichment, fuel fabrication, reactor, etc.)
 - Process description (eg. gas centrifuge, PUREX, etc.)
- Chemical form (Yellowcake, UF₄, PuO₂, MOX, etc.)
- Intended purpose (eg. LWR fuel)
 - Intended use location (eg. US BWR reactors)
 - Intended use notes (eg. designed for 50,000 MWD/MT burn-up)
 - Transportation comments (eg. routes, frequency, etc.)

Data Vetting Information

- Peer-review of data quality and confidence in reported results
- Describe and document the original purpose of the analytical data (eg. material specification verification, forensics assessment)
- Assign a confidence of High, Medium, or Low based on analytical protocol knowledge and / or provenance of the data
- Describe why confidence level was chosen

Path Forward

- Beginning international outreach
 - Get peer country feedback on Data Dictionary
- Engaging with ITWG
 - Discussion of National Libraries concept at June 2010 ITWG
 Annual Meeting
- Ensure IAEA support for National Libraries concept
- Roll-out concept at appropriate international forums including GICNT and technical conferences

Summary

- Utility of nuclear forensics
 - Understanding material history and origin
 - Deter illicit activities involving nuclear material
- Value of nuclear material libraries
 - Critical for timely and informed nuclear forensics assessments
- National Nuclear Forensic Library concept
 - Country specific implementation
 - US developed Data Dictionary designed to facilitate international discussion and partnership

