Nuclear Forensics & Bulk Special Nuclear Material (SNM) Characterization

Lav Tandon, Kevin Kuhn, Dan Schwartz, and Lawrence Drake

Chemistry & Material Science Divisions

Los Alamos National Laboratory (LANL)

Los Alamos, NM 87544, USA

Los Alamos National Laboratory

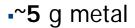
Analysis of Major and Minor Constituents

- Major accurate and precise assay of plutonium (Pu), uranium (U), other actinides with traceability to national standards.
 - Certify the purity of various grades of metals; advanced actinide fuels; oxides; nitrides; carbides; solutions; ²³⁸Pu, nuclear or residue, and nuclear forensics samples
- Minor from percent to part-per-thousand level
 - Ability to measure minor components critical to material performance, corrections for interferences and mass balance.
 - Both assay and minor component analyses provide measurements used in defense, nonproliferation, nuclear accountancy/safeguards, counter-proliferation, nuclear materials technologies, basic science and for material control and accountability (MC&A)

Analysis of Trace Impurities

- Beyond measuring major and minor components, measurement of trace (part-per-thousand to part-per-billion) impurities is a significant capability.
- Maintaining these capabilities requires methods which can measure virtually any element from the Periodic Chart within an actinide matrix.
- Techniques include
 - ICP-MS
 - ICP-AFS
 - Isotope Dilution Mass Spectrometry
 - Spectrophotometry
 - Radiochemistry
 - Non-metal analyses

-Ability to analyze a large suite of elements with concentrations varying over several orders of magnitude (from % to ppb)


CHEMISTRY

Н																	Не
Li	Be	.1	.AN	L Ar	naly	tica	l Te	chn	ique	es		В	С	N	0	F	Ne
Na	Mg	_										Al	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	(Ln)	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	(An)															
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
^{1so} Pu	lso U		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
-Pu, U – Assay/ Fe Spectrophotometry -LECO interstitial gas analyzer							er										
						Mass	-		etry			-ICP-N	/lass S	pectr	omet	ry	
	-Radio Chemistry – Np, Am, Pu					-ICP-A	tomic	Emis	sion S	Spectr	ometry						
	-X-ray Fluorescence – Ga, U, (Fe)					lon C	hrom	atogra	aphy								
\lam	-Cold Vapor Atomic Fluorescence UNCLASSIFIED					-Gas I	Mass S	Spectr	omet		EMISTI						

Typical Sample Size for Analysis

received

•~**500** mg

Assay and XRF

•~250 mg

Trace analysis

-~150 mg -~100 mg

carbon

Radiochem

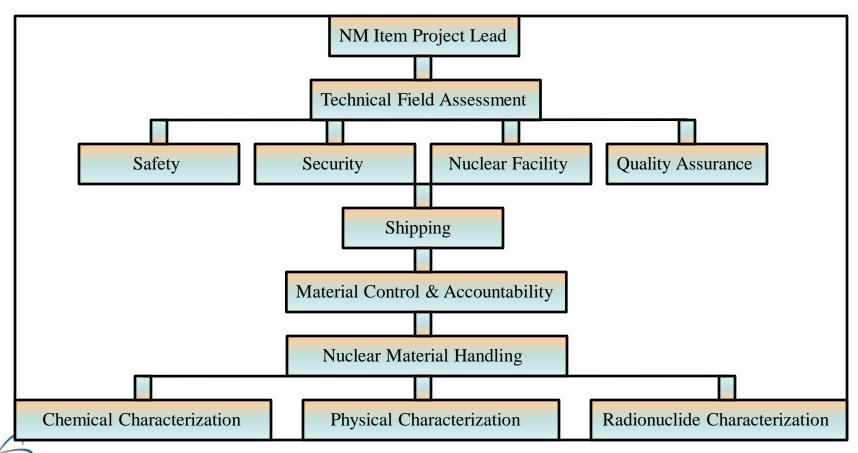
•For most sample types, duplicate cuts are analyzed by each method.

and isotopic

UNCLASSIFIED

Nuclear Forensic Operations

Nuclear facilities...


- provide an engineered infrastructure for workers to safely handle significant quantities of nuclear materials
- provide protection to the population from exposure to unsecured nuclear materials
- •inadvertent -
- •advertent weapon of mass destruction (WMD), improvised nuclear device (IND), radiological dispersal device (RDD), radiological exposure device (RED)
- demand formalized conduct-of-operations for all routine and non-routine nuclear material handling, processing, and measurement activities

CHEMISTRY

Nuclear Forensic Operations

Conduct-of-Operations Teams

Material Processing

Material Handling

- Clean nuclear material enclosures
- Collect swipes of "clean" enclosures to monitor contamination levels
- Handle each material in a new glove-bag
- Collect swipes on target surfaces for ultratrace signatures

Nuclear Forensic Operations

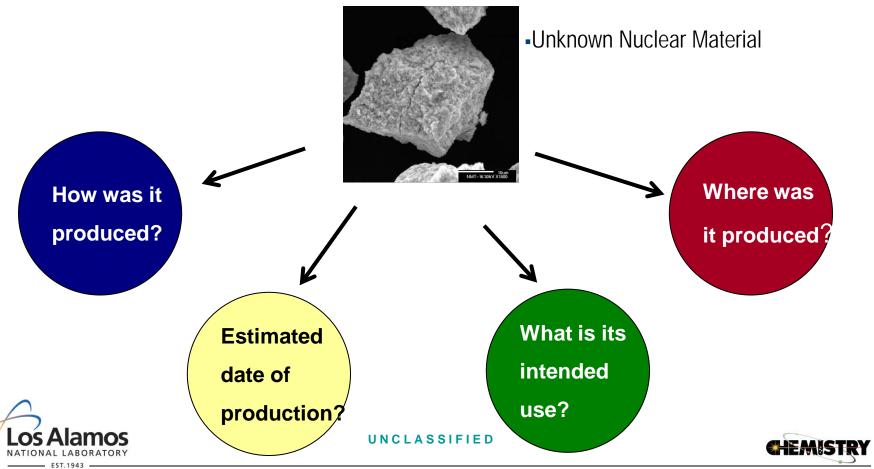
Chemical Characterization Capabilities

- alpha spectrometry
- colorimetry
- controlled potential coulometry
- gamma spectrometry
- combustion infrared spectroscopy
- ion chromatography
- neutron counting
- thermal ionization mass spectrometry
- titrimetry
- inductively coupled plasma mass spectrometry
- inductively coupled plasma atomic emission spectroscopy
- x-ray fluorescence

UNCLASSIFIED

Nuclear Forensic Operations

Physical Characterization Capabilities

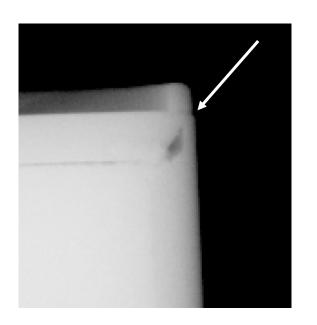

- gravimetry
- optical microscopy
- particle size analysis
- photography
- pycnometry
- secondary electron microscopy
- x ray diffractometry
- x ray radiography

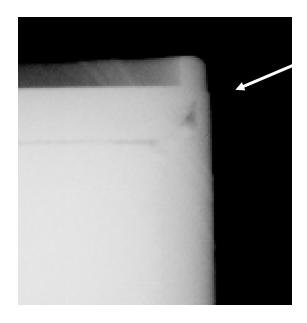
Objective

 To perform forensic analysis on nuclear materials by identifying key elements for forensic investigations

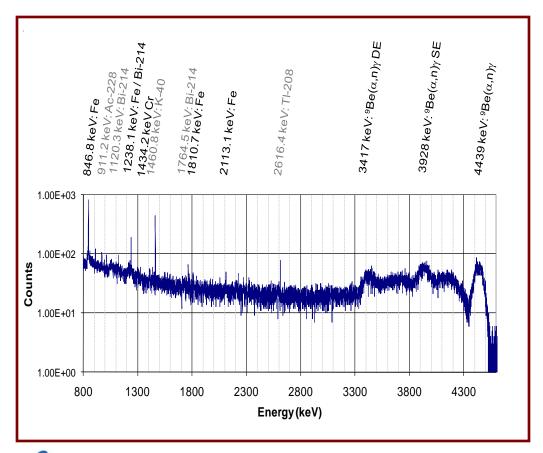
Nuclear Forensic Operations

- What? measured nuclear material characteristics
- When? nuclear material processing timeline
- Why? intended use of nuclear material
- How? processing methods to produce the nuclear material
- Who? infer from "How"
- Where? infer from "Who"


Sealed neutron source: plutonium-beryllium


- photography
- radiography
- lathe machining
- opening
- extraction

Radiographic Interpretation


•Press fit? No evidence of weld

possibly all powered/granules or surfaces are powdered

Source characterization

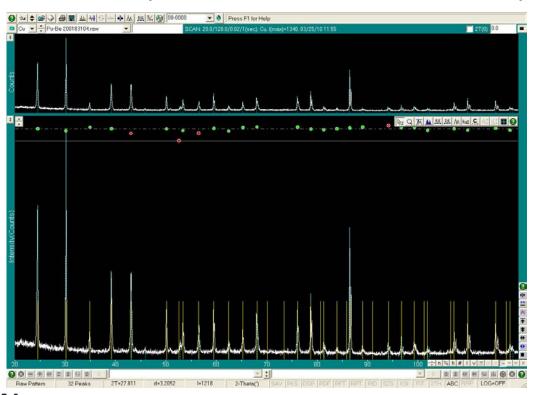
Gamma Spectrometry on a PuBe source

Plutonium-beryllium metal

Plutonium and beryllium assay results on dissolved plutoniumberyllium metal

Analytical Method	Element	Result
Controlled potential coulometry	Plutonium	(61.57 ± 0.15) wt%
ICP – atomic emission spectroscopy	Beryllium	(38.4 ± 0.8) wt%

Plutonium-beryllium chemical form inferred from assay measurements


Chemical Form	
PuBe _{16.6}	

Plutonium-beryllium metal

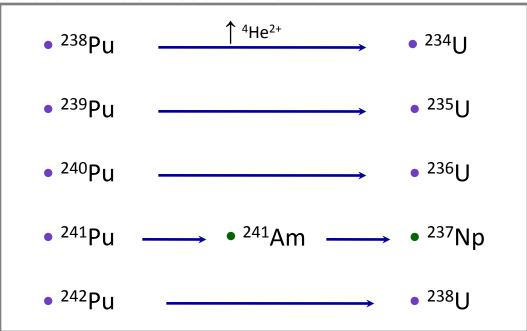
Plutonium-beryllium chemical form from x-ray diffraction measurement

Chemical Form

PuBe₁₃

UNCLASSIFIED

Plutonium-beryllium metal


Measured elemental composition on dissolved plutonium-beryllium metal

Analytical Method	Element	Result
Gamma spectrometry	Americium	(1550 ± 4) μg/g
Isotope dilution mass spectrometry	Uranium	(935 ± 1) μg/g
Alpha / gamma spectrometry	Neptunium	(108 ± 5) μg/g
ICP – mass spectrometry	Chromium	(114 ± 2) μg/g
ICP – mass spectrometry	Magnesium	(33 ± 4) μg/g
All methods	∑Elements	101 wt%

Plutonium-beryllium metal

Radionuclide Measurements

Ages

47 years

45 years

45 years

46, 46 years

- Radiochemistry
- Thermal ionization mass spectrometry

UNCLASSIFIED

Neptunium-oxide powder

CHEMISTRY

Neptunium-oxide powder

Neptunium assay results on dissolved neptunium powder

Analytical Method	Assay Result	Replicates
Alpha Counting/Spectrometry	(88.7 ± 2.5) wt%	8
Controlled Potential Coulometry	(88.14 ± 0.40) wt%	4
Gamma Spectrometry	(87.7 ± 3.5) wt%	4

Neptunium-oxide powder

Trace plutonium concentration result on dissolved neptunium powder

Analytical Method	Plutonium Result	Replicates
Isotope Dilution Mass Spectrometry	(44.9 ± 0.4) μg/g	4

Trace uranium concentration result on dissolved neptunium powder

Analytical Method	Uranium Result	Replicates
Isotope Dilution Mass Spectrometry	(0.9 ± 0.08) μg/g	4

Neptunium-oxide powder

Plutonium isotopic composition results on dissolved neptunium powder

Plutonium Isotopic Ratio	TIMS Ratio Result	Replicates
Pu-238 / Pu-239	(2.767 ± 0.008)	2
Pu-240 / Pu-239	(0.138 ± 0.001)	2
Pu-241 / Pu-239	(0.009 ± 0.0001)	2
Pu-242 / Pu-239	(0.105 ± 0.001)	2

Neptunium-oxide powder

Uranium isotopic composition results on dissolved neptunium powder

Uranium Isotopic Ratio	TIMS Ratio Result	Replicates
U-233 / U-238	(0.95 ± 0.05)	2
U-234 / U-238	(0.98 ± 0.05)	2
U-235 / U-238	(1.47 ± 0.08)	2
U-236 / U-238	(0.52 ± 0.03)	2

Neptunium-oxide powder

Calculated age-since-separation estimates for neptunium powder

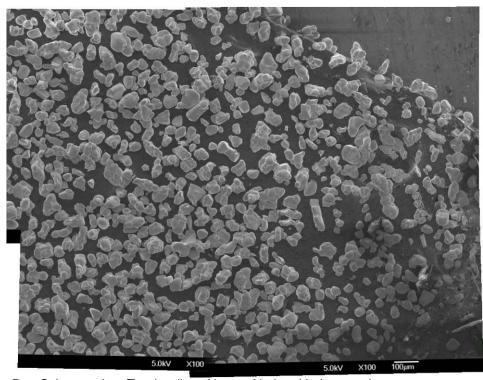
Daughter / Parent Chronometers	Age Result	Replicates
U-233 / Np-237	(7.7 ± 0.3) months	4
U-234 / Pu-238	(7.9 ± 0.3) months	4

Neptunium-oxide powder

Metal contaminants in dissolved neptunium powder by ICP-AES/MS

Metal Contaminant	Result	Replicates
Thorium	(2550 ± 510) μg/g	6
Cerium	(73 ± 15) μg/g	6
Phosphorus	(72 ± 14) μg/g	6
Chromium	(12 ± 2) μg/g	6
Tin	(3.5 ± 0.7) μg/g	6
Silver	(1.4 ± 0.3) μg/g	6
Cadmium	(0.73 ± 0.15) μg/g	6
Lanthanum	(0.51 ± 0.10) μg/g	6

UNCLASSIFIED


Uranium-oxide powder

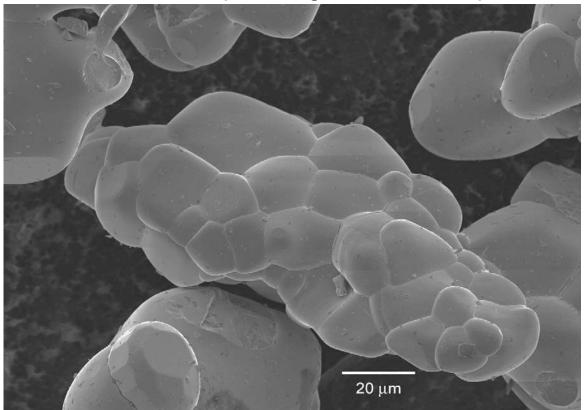
Enriched Uranium Octoxide, U₃O₈


Dan Schwartz, Lav Tandon (Los Alamos National Laboratory)

- Coarse black powder
- Homogeneity
- **Particle Shape**
- Particle Size
 - $41 \pm 18 \,\mu m$ equivalent circular diameter

Enriched Uranium Octoxide, U₃O₈

Dan Schwartz, Lav Tandon (Los Alamos National Laboratory)


- Particle structure common to sintered ceramics
- Particles composed of smaller, roughly spherical particles
- Smaller particles have been sintered at high temperature
- Large number of fractured particles suggests a crushing operation

CHEMISTRY

Uranium-oxide powder

Secondary electron microscopic image of uranium powder

Enriched Uranium Octoxide, U₃O₈

Uranium Metal

dissolution and precipitation of uranyl nitrate

Oxide Conversion

uranyl nitrate converted to uranium octoxide

U₃O₈ Purification

dissolved, precipitated, calcined, sintered

U₃O₈ Particle Sizing

rod milled, sized, high fired

Intended Use

ceramic grade U₃O₈ for fuel fabrication

CHEMISTRY

Conclusions

Nuclear facilities...

- •The actinide analytical chemistry group at Los Alamos National Laboratory sees opportunity to validate and refine formal procedures for the chemical and physical characterization of nuclear materials operated by functional teams identified in our forensic conduct-of-operations model.
- Periodic evaluation is crucial to maintaining operable nuclear forensic procedures that accurately address current site institutional policy, organizational structure, technical capability, and staff training.

Nuclear Forensic Team Acknowledgments

Lav Tandon, David L. Gallimore, Katherine Garduno, Russell C. Keller, Kevin J. Kuhn, Elmer J. Lujan, Alexander Martinez, Steven C. Myers, Steve S. Moore, Donivan R. Porterfield, Daniel S. Schwartz, Khalil J. Spencer, Lisa E. Townsend, Ning Xu, David Fry, Lynn Foster, James Fulwyler, Mick Greenbank, Fran Martin, David Martinez, Patrick Martinez, Pam Mondragon, Josh Narlesky, George Neal, Alice Slemmons, Mariam Thomas, Julie Trujillo

