# Ultra-Trace Sample Analysis and Data Reduction

Robert Steiner, Stephen LaMont, Fred Roensch, Jeff Roach, Will Kinman, Rebecca Foley, Don Dry and Lee Riciputi

> Nuclear and Chemistry Group Los Alamos National Laboratory Los Alamos, New Mexico 87545 LA-UR 10-06348

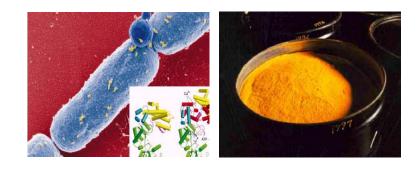


UNCLASSIFIED



# Outline

- What are we trying to do?
- Who we are doing it for
- Capabilities
- Sample Types
- Blanks and contamination control
- Data for environmental level swipes
- Environmental sample analysis example
- Uncertainty analysis
- Summary




UNCLASSIFIED



- Who, What, When, Where, How?
  (Why is someone else's problem)
- Bulk to ultra-trace quantities of material
- Discrimination (matching)
- Classification (what are the groups, databases)
- Predictive what causes characteristics, understanding through various "processing" stages
  - Develop chemical/isotopic tools for potential forensics applications on a variety of materials (chemical, biological, nuclear)
  - Improve analytical capabilities (sensitivity, precision, accuracy, throughput)
  - Small sample capability in particular (material, radiological limits)
  - Methodologies applicable to a wide variety of disciplines involving interactions among different pools of matter







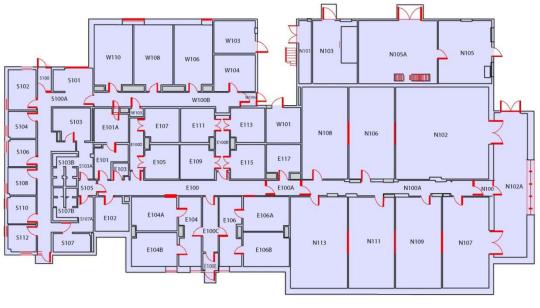
# Programs Supported By the RC-45 Clean Facility

- LANL *in vitro* Pu, Am and H<sub>3</sub> Bioassay
- IAEA Safeguards
- National and International Security
- Basic Energy Sciences Geochemistry
- U.S. Dept. of Energy R&D Efforts
- LANL Environmental Monitoring



UNCLASSIFIED




# RC-45 Clean Chemistry and Mass Spectrometry Facility





UNCLASSIFIED







- New surface science facility (SIMS, SEM and prep labs)
- Proposed addition to RC-45 (office, general and clean chemistry laboratories, clean instrument laboratories)
- Institutional investment priority





#### Certification

- Annual certification under FED209E
- Class 10,000 hallways and laboratories
- Class 100 work areas and exhausted laminar flow work cabinets
- Test noise and light levels



UNCLASSIFIED



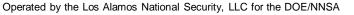
## **Radiation Spectrometry**



Alpha spectrometry Sample screening and actinide quantification, especially <sup>238</sup>Pu and <sup>241</sup>Am



Ultra-Low Background Clover Gamma-Ray Spectrometer Special radiochemical counting applications






Compton Suppressed Gamma-ray Spectrometry

Sample screening and quantification of activation and fission products

UNCLASSIFIED





# **Clean Radiochemistry**

## Cleanroom compatible sample ashing

Class 100, low insulation ashing equipment for particle control



#### **Radiochemistry processing**

Class 10-100, glassware cleaning, sample dissolution and digestion, ion exchange chemistry, sample dry down



Sample loading areas Class 10 -100, electroplating, carborizing





UNCLASSIFIED



# **Bulk Analysis**

Multi-collector ICP-MS (MC-ICP-MS) High precision, high accuracy Isotope ratios (U, Sr, Pb, Fe, B...) ng to <fg sample requirements



#### Sector Field ICP-MS (SF-ICP-MS) Ppq – ppm elemental concentrations



Multi-collector Thermal Ionization MS (TIMS) Pu, other actinide, Sr, Nd





UNCLASSIFIED



# In Situ Analysis w/Spatial Resolution

Laser ablation

193 nm ArF Excimer In-situ analysis w/ ICP-MS systems Few micron spatial resolution





Field Emission Environmental SEM (FE-ESEM)) Morphology Major, minor elemental characterization w/ WDS, EDS systems

Cameca 1280 High transmission, High sensitivity Secondary Ionization MS (SIMS)

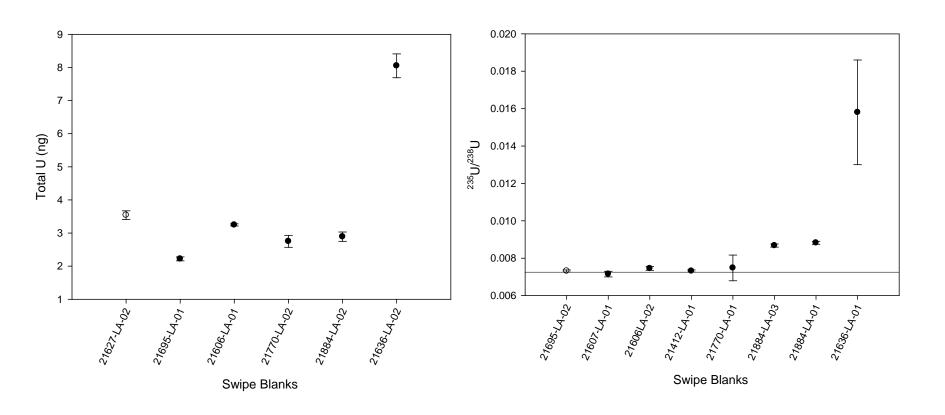




UNCLASSIFIED



# Sample Types

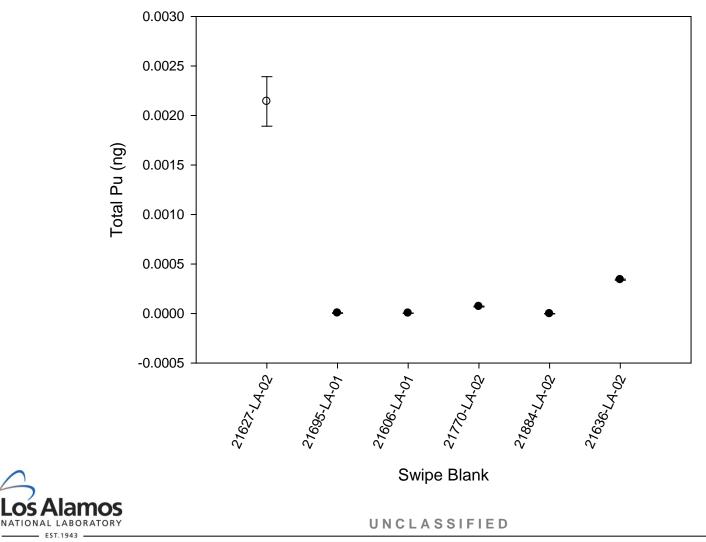

- Swipes
- Soil
- Water
- Vegetation
- Biological (urine, bone, tissue)
- Geological
- Sub-samples of bulk material for specialized analyses (e.g. age dating, morphology)



UNCLASSIFIED



### **Uranium Swipe Blanks**



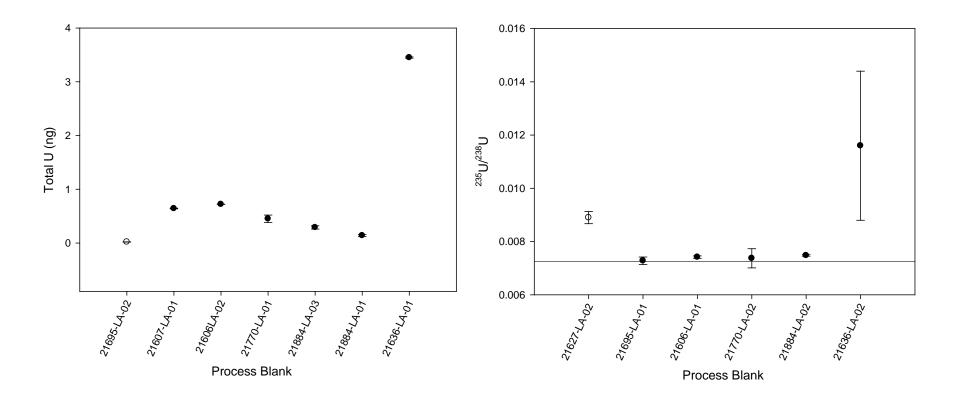



UNCLASSIFIED



## Pu Swipe Blank



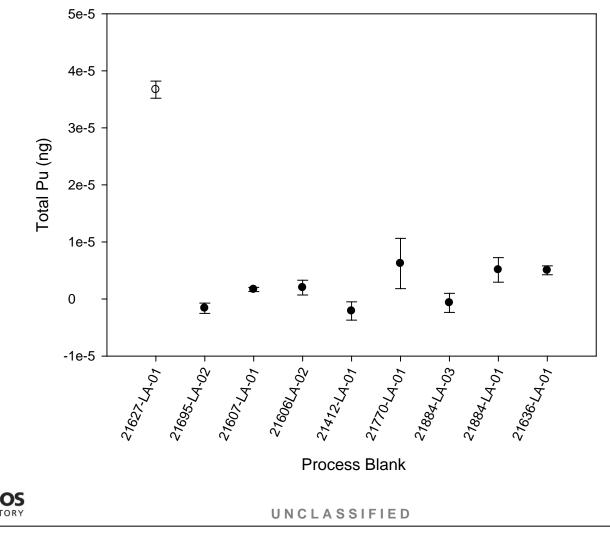

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

a

EST.1943

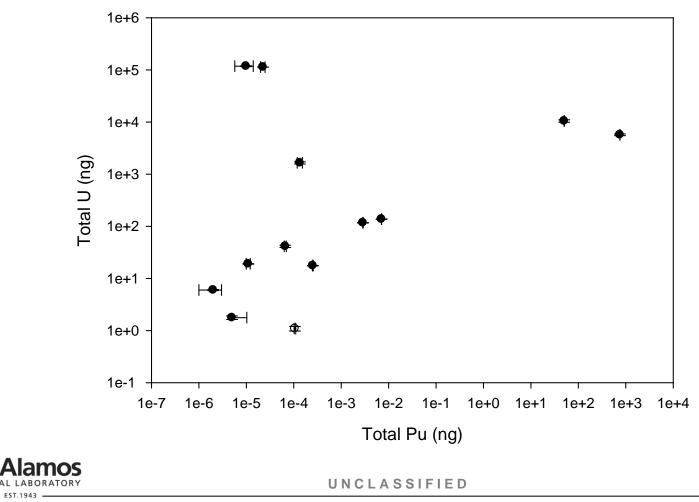


#### **Uranium Process Blanks**






UNCLASSIFIED




#### Pu Process Blanks





### Total U and Pu



Operated by the Los Alamos National Security, LLC for the DOE/NNSA

NATIONAL



### Pu Cross-Contamination Control

| Sample                   | Total Pu (ng)              | <sup>239</sup> Pu/ <sup>240</sup> Pu | Cross-Contamination<br>Factor |
|--------------------------|----------------------------|--------------------------------------|-------------------------------|
| 21627-02-02              | $50.3 \pm 0.217$           | 0.49                                 |                               |
| 21627-LA-01<br>(process) | 0.0000367±<br>0.00000154   | 0.41                                 | ≈1x10 <sup>6</sup>            |
| 21627-LA-02<br>(swipe)   | $0.00214 \pm 0.0000246$    | 0.53                                 | ≈2x10 <sup>4</sup>            |
| 21636-05-02              | $755 \pm 3.78$             | 0.30                                 |                               |
| 21636-LA-01<br>(process) | 0.00000503±<br>0.000000783 | 0.10                                 | ≈1x10 <sup>8</sup>            |
| 21636-LA-02<br>(swipe)   | 0.000342±<br>0.00000593    | 0.31                                 | ≈2x10 <sup>6</sup>            |



UNCLASSIFIED



# Recent Environmental Study

Background

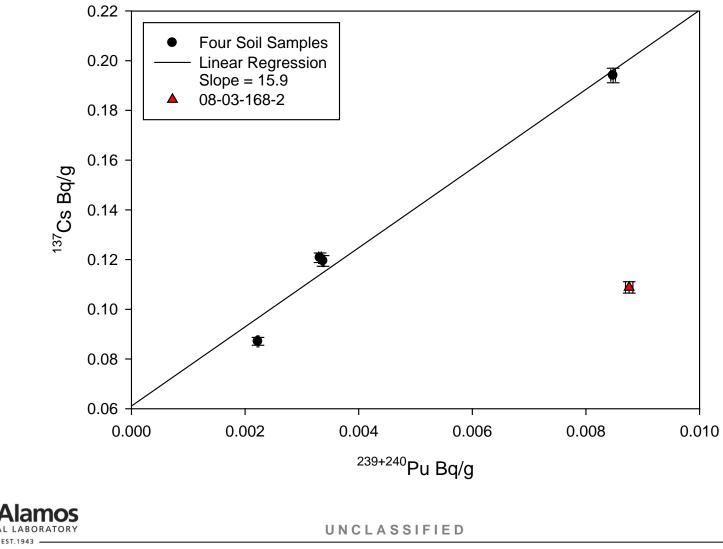
- Five soil samples from local area showing elevated radiological activity
- Measure <sup>137</sup>Cs
- Measure <sup>239</sup>Pu, <sup>240</sup>Pu, <sup>241</sup>Pu
- Goal: Determine origin of material (i.e. global fallout, regional fallout, localized contamination)



UNCLASSIFIED

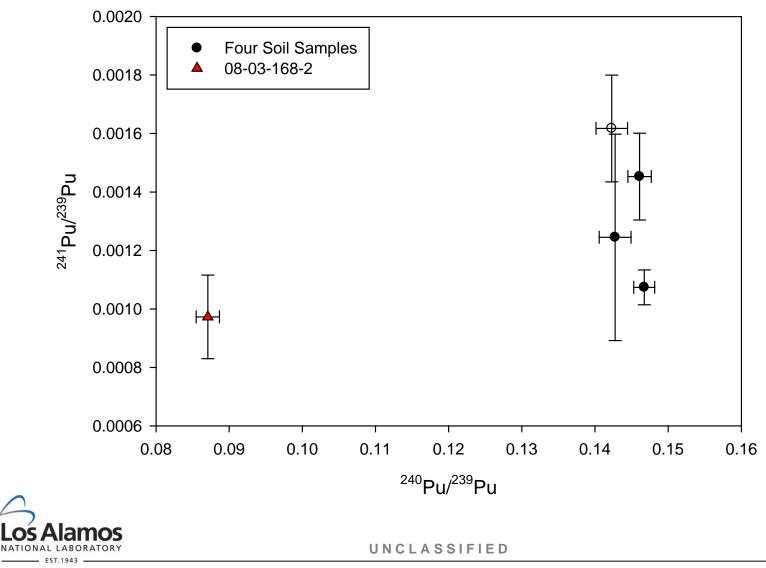


# Experimental


- Samples and an appropriate SRM were analyzed by gamma-ray spectrometry to determine <sup>137</sup>Cs content.
- Samples and appropriate SRM were radiochemically processed.
- Samples and appropriate SRM were analyzed by alpha spectrometry to determine <sup>238</sup>Pu, <sup>239+240</sup>Pu and <sup>241</sup>Am content
- Samples and appropriate SRM were analyzed by thermal ionization mass spectrometry to determine <sup>239</sup>Pu, <sup>240</sup>Pu and <sup>241</sup>Pu content



UNCLASSIFIED




<sup>137</sup>Cs vs <sup>239+240</sup>Pu Activity in Five Soil Samples





#### <sup>241</sup>Pu/<sup>239</sup>Pu vs <sup>240</sup>Pu/<sup>239</sup>Pu in Five Soil Samples





# Conclusion

- One sample was significantly different than the other four.
- The unique sample has unambiguous characteristics of fallout from low yield atmospheric tests conducted at the Nevada Test Site.
- The data from the other four samples show characteristics of radionuclides distributed globally from large, high yield atmospheric tests by the US and the former Soviet Union.
- In all cases data is indicative of nuclear testing fallout and is not characteristic of localized contamination.



UNCLASSIFIED



# **GUM Compliance**

- Data reduction and uncertainty calculation performed using GUM principles
- Uncertainty calculations validated using GUM workbench
- Currently assessing twoapproaches for uncertainty determination based on GUM approach (pooled uncertainty model vs. classical uncertainty determination)



UNCLASSIFIED



#### U Isotopic Analysis Model Equation for <sup>235</sup>U/<sup>238</sup>U

*{Mass fractionation corrected atom ratios}*  $R_{\text{sample1.235/238}} = R_{\text{sample1.235/238,meas}} / CF_{235/238};$ {Atom percent abundance}  $AtP_{235} = 100 R_{sample1,235/238} / (R_{sample1,234/238} + R_{sample1,235/238} + R_{sample1,236/238} + 1)$ 7  $AtP_{238} = 100/(R_{sample1,234/238} + R_{sample1,235/238} + R_{sample1,236/238} + 1);$ {Atomic weight}  $AtW = (AtP_{234} * AtM_{234} + AtP_{235} * AtM_{235} + AtP_{236} * AtM_{236} + AtP_{238} * AtM_{238})/100;$ *{Weight percent abundance}*  $WtP_{235} = AtP_{235} * AtM_{235} / AtW;$  $WtP_{238} = AtP_{238} * AtM_{238} / AtW;$ {Mass fractionation factor}  $CF_{235/238} = (R_{C,235/238meas}/R_{C,235/238cert});$ < Alamos UNCLASSIFIED



#### **Uncertainty Budget**

R<sub>sample1,235/238</sub>: measurand; mass fractionation corrected U-235/U-238 of the sample

| Quantity                       | Value                                   | Standard<br>Uncertainty                         | Distribution | Sensitivity<br>Coefficient | Uncertainty<br>Contribution                     | Index               |
|--------------------------------|-----------------------------------------|-------------------------------------------------|--------------|----------------------------|-------------------------------------------------|---------------------|
| R <sub>sample1,235/238,m</sub> | 6.91200·10 <sup>-3</sup><br>atom / atom | 7.60·10 <sup>-6</sup><br>atom / atom            | normal       | <mark>1.0</mark>           | <mark>7.6·10<sup>-6</sup> atom</mark><br>∕ atom | <mark>28.4 %</mark> |
| R <sub>C,235/238meas</sub>     | <mark>0.0101340</mark><br>atom/atom     | <mark>17.0·10<sup>−6</sup><br/>atom/atom</mark> | normal       | <mark>-0.68</mark>         | -12·10 <sup>-6</sup> atom<br>/ atom             | <mark>65.9 %</mark> |
| R <sub>C,235/238cert</sub>     | 0.01014900<br>atom/atom                 | <mark>5.00∙10<sup>-6</sup><br/>atom/atom</mark> | normal       | <mark>0.68</mark>          | <mark>3.4·10<sup>-6</sup> atom</mark><br>∕ atom | <mark>5.7 %</mark>  |
| R <sub>sample1,235/238</sub>   | $6.9222 \cdot 10^{-3}$ atom / atom      | 14.3·10 <sup>-6</sup><br>atom / atom            |              |                            |                                                 |                     |



UNCLASSIFIED



#### Uncertainty Budget (Cont.)

 $CF_{235/238}$ : interim quantity: calculated mass fractionation correction factor for the U-235/U-238 ratio

| Quantity                   | Value                   | Standard<br>Uncertainty                         | Distribution | Sensitivity<br>Coefficient | Uncertainty<br>Contribution | Index               |
|----------------------------|-------------------------|-------------------------------------------------|--------------|----------------------------|-----------------------------|---------------------|
| R <sub>C,235/238meas</sub> | 0.0101340<br>atom/atom  | <mark>17.0·10⁻<sup>6</sup><br/>atom∕atom</mark> | normal       | <mark>99</mark>            | $1.7 \cdot 10^{-3}$         | <mark>92.0 %</mark> |
| R <sub>C,235/238cert</sub> | 0.01014900<br>atom/atom | $5.00 \cdot 10^{-6}$ atom/atom                  | normal       | -98                        | -490·10 <sup>-6</sup>       | 8.0 %               |
| CF <sub>235/238</sub>      | 0.99852                 | $1.74 \cdot 10^{-3}$                            |              |                            |                             |                     |



UNCLASSIFIED



#### Results for <sup>235</sup>U/<sup>238</sup>U Isotopic Analysis

#### **Results:**

| Quantity                     | Value                                 | Expanded<br>Uncertainty         | Coverage factor | Coverage                |
|------------------------------|---------------------------------------|---------------------------------|-----------------|-------------------------|
| R <sub>sample1,235/238</sub> | 6.922·10 <sup>-3</sup> atom<br>/ atom | 33·10 <sup>-6</sup> atom / atom | 2.32            | 95% (t-table<br>95.45%) |
| CF <sub>235/238</sub>        | 0.999                                 | 0.018                           | 2.32            | 95% (t-table<br>95.45%) |
| AtP <sub>235</sub>           | 0.6874 %                              | 3.3·10 <sup>-3</sup> %          | 2.32            | 95% (t-table<br>95.45%) |
| AtP <sub>238</sub>           | 99.3075 %                             | 3.3·10 <sup>-3</sup> %          | 2.32            | 95% (t-table<br>95.45%) |
| WtP <sub>235</sub>           | 0.6788 %                              | 3.2·10 <sup>-3</sup> %          | 2.32            | 95% (t-table<br>95.45%) |
| WtP <sub>238</sub>           | 99.3162 %                             | 3.2·10 <sup>-3</sup> %          | 2.32            | 95% (t-table<br>95.45%) |



UNCLASSIFIED



### Lessons Learned

- Application of GUM workbench is straight forward for samples that can be analyzed multiple times
- Application of GUM methodology is more difficult for samples of very limited amount
- Development of a pooled uncertainty approach is labor intensive and requires matrix matched QCs



UNCLASSIFIED



# Summary

- LANL has many years of experience supporting environmental-level programs
- A diverse set of capabilities exist with new capabilities coming on-line
- LANL continues to strive for the highest and most defensible data quality
- There are many areas for future collaboration



UNCLASSIFIED

