

Determination of isotope ratios for individual plutonium particles with ICP-MS

Research Group for Radiochemistry, Japan Atomic Energy Agency (JAEA) <u>F. Esaka</u>, M. Magara, D. Suzuki, Y. Miyamoto, C.G. Lee and T. Kimura

(1) Clean laboratory in JAEA (CLEAR facility)

(2) Our analytical techniques for nuclear safeguards

(3) An analytical technique for individual plutonium particles

(4) Conclusions

International Symposium on Nuclear Forensics following on Nuclear Security Summit, October 5-6, 2010, Tokai, Japan

CLEAR facility in JAEA

<u>Clean Laboratory for Environmental Analysis and Research</u>

Layout of analytical building

3/18

Analysis of environmental samples for SG

Procedure of bulk analysis

- Swipe samples
- Ashing
- Digestion
- Addition of spikes (²³³U and ²⁴²Pu)
- Chemical separation (U and Pu)
- Isotope ratio analysis (ICP-MS)
- Concentration (IDM, ICP-MS)

ICP-MS

Mass spectrum of uranium

Japan Atomic Energy Agency

Chemical separation

JAEA

Procedure of particle analysis (SIMS)

- Swipe samples
- Particle recovery (Impactor)
- Particle screening (TXRF)
- Particle search (SEM-EDX)
- Particle manipulation (SEM)
- Isotope ratio analysis (SIMS)

JAEA

Japan Atomic Energy Agency

Particle manipulation

Result of particle analysis (SIMS)

Procedure of particle analysis (FT-TIMS)

- Swipe samples
- Sample preparation
- Neutron irradiation
- Chemical etching
- Observation of fission tracks
- Particle transfer
- Isotope ratio analysis (TIMS)

Japan Atomic Energy Agency

Result of particle analysis (FT-TIMS)

10 μm

Uranium isotope ratios measured with TIMS Fission tracks of uranium particles

Analysis of individual plutonium particles

Isotope ratio analysis for individual plutonium particles is difficult in SIMS and FT-TIMS analyses.

The problem is the isobaric interference of Am-241 to Pu-241 in a Pu particle.

(Am-241 is the decay product of Pu-241)

Another approach is necessary to perform the analysis of individual plutonium particles accurately

We propose a method by a combination of chemical separation and inductively-coupled plasma mass spectrometry (ICP-MS)

Procedure of particle analysis (Pu)

- Swipe samples
- Particle recovery (Impactor)
- Particle search (SEM-EDX)
- Particle transfer
- Dissolution of each particle
- Chemical separation
- Isotope ratio analysis (ICP-MS)

JAEA

Analytical condition

ICP-MS parameter

Parameter	Setting	
ELEMENT-1 (Thermo Electron Co.)		
RF power	1184 W	
Cooling gas flow rate	16.0 L/min.	
Auxiliary gas flow rate	0.85 L/min.	
Sample gas flow rate	1.0 L/min.	
Solution uptake rate	0.18 mL/min.	
Sampling time per isotope	50 ms	
Scan par replicate	400	
Number of replicate	5	
Sensitivity	1700 cps/ppt	
Resolution (M/ Δ M)	300	

ICP-MS (Element-1)

Desolvation sample introduction system

Procedural blank values (Pu)

m/z	Counts / s	
	Without desolvation	desolvation
239	0.3 ± 0.2	0.7 ± 0.2
240	0.1 ± 0.1	0.3 ± 0.1
241	0.1 ± 0.1	0.1 ± 0.1
242	0.1 ± 0.1	0.3 ± 0.2

Sensitivity and samples

Count rates obtained by measuring NBL SRM 947 solution (5 ppt)

Plutonium oxide particles prepared from NBL SRM 947 standard material

	Counts / s	
m/z	Without desolvation	desolvation
239	8775 ± 557	54393 ± 1078
240	2118 ± 129	13058 ± 279
241	388 ± 24	2376 ± 48
242	134 ± 10	835 ± 19

Without desolvation: 1700 cps/ppt With desolvation: 10600 cps/ppt

15/18

Results of isotope ratio analysis without chemical separation

with (b) desolvation sample introduction.

16/18

Japan Atomic Energy Agency

Results of isotope ratio analysis after chemical separation

Conclusions

- SIMS and FT-TIMS techniques are successfully used for uranium particle analysis as a member of IAEA-NWALs.
- We have developed an analytical method for individual plutonium particles by a combination of chemical separation and ICP-MS.
- Accurate and precise isotope ratio results can be obtained, even if the particle size is less than 1 $\mu m.$
- This method is going to be applied to age determination of individual plutonium particles. (²⁴¹Am/²⁴¹Pu ratio)
- Feasibility study will be carried out for age determination of (individual) uranium particles. (²³⁰Th/²³⁴U ratio ???)