

Nuclear Forensics Analytical Potential in JAEA

Nuclear Forensics WS October 5 – 6, 2010 Tokai, Japan

Yusuke Kuno, Masato Hori Nuclear Nonproliferation Science and Technology Center

Japan Atomic Energy Center

Contents

Background Potential Analytical Capability Preparation Towards Nuclear **Forensics Analysis** Areas to be involved and R&D **Candidates for International** Collaboration

Background

Japan's National Statement at the Nuclear Security Summit

Development of Technology related to Measurement and Detection of Nuclear Material and <u>Nuclear Forensics</u> based on International Cooperation

As Japan and U.S. recently reached agreement on cooperation in the development of technology that contributes to the advancement of the measurement and control of nuclear material, as well as technologies related to the detection of nuclear material and nuclear forensics that contribute to the identification of the sources (countries and facilities) of nuclear material illicitly trafficked or used in terrorist attacks, Japan will make increased contributions to the international community by establishing these technologies with more precise and accurate capabilities in detection and forensics within an approximate three year time frame and sharing the fruits of these new technologies with the international community. 4

Potential Analytical Capability

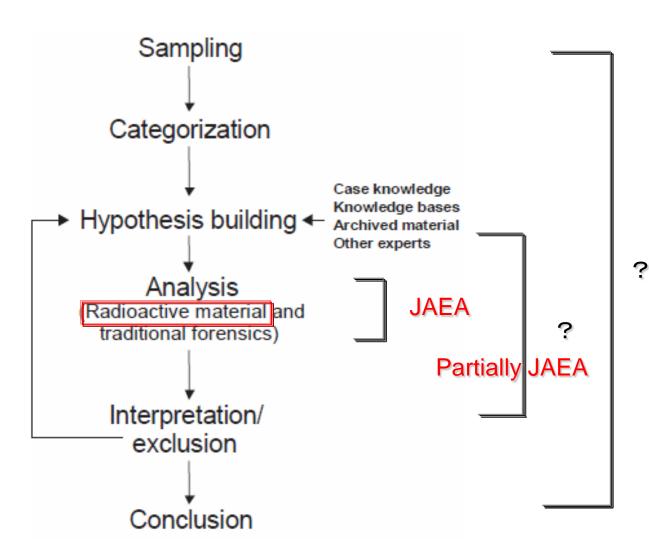


FIG. 2. The nuclear forensics process.

Nuclear Forensics Support Technical Guidance Reference Manual IAEA Nuclear Security Series No. 2

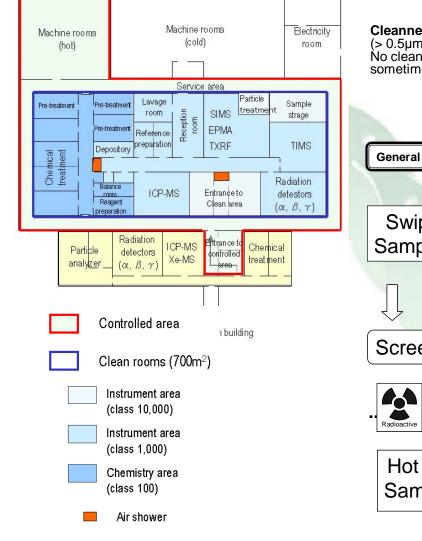
TABLE 2. SUGGESTED SEQUENCE FOR LABORATORY TECHNIQUES AND METHODS

Nuclear Forensics Support Technical Guidance Reference Manual IAEA Nuclear Security Series No. 2

Techniques/methods	24 hours	One week	Two months
Radiological	Estimated total activity Dose rate $(\alpha, \beta, \gamma, n)$ Surface contamination	JAEA can pla	y a role.
Physical	Visual inspection Radiography Photography Weight Dimensions Optical microscopy Density	SEM/EDS XRD	<u>TEM (EDX)</u>
Traditional forensic Isotope analysis	Fingerprints, fibres γ spectroscopy	Mass spectrometry	Radiochemical
Elemental/chemical	JAEA can technically support.	(SIMS, TIMS, ICP-MS) ICP-MS XRF	separation GC-MS
		Assay (titration, IDMS)	

SEM/EDS: Scanning electron microanalysis with energy dispersive sensor; TEM: transmission electron microscopy; SIMS: secondary ion mass spectrometry; TIMS: thermal ionization mass spectrometry; ICP-MS: inductively coupled plasma mass spectrometry; XRF: X ray fluorescence analysis; IDMS: isotope dilution mass spectrometry; GC-MS: gas chromatography-mass spectrometry. (See Appendix II for further references.)

TABLE 1. CATEGORIES OF NUCLEA	R Nuclear Forensics Support
	Technical Guidance Reference Manual
	IAEA Nuclear Security Series No. 2


Category	Type of material or device	Radioactive components	
Unirradiated direct use nuclear material	High enriched uranium (HEU)	>20% U-235	
	Plutonium and mixed U–Pu oxides (MOX)	<80% Pu-238	
	U-233	Separated isotope	
Irradiated direct use nuclear material	Irradiated nuclear fuel material	In irradiated nuclear fuel elements or in spent fuel reprocessing solutions	
Alternative nuclear material	Americium (Am-241)	Separated element or present	
	Neptunium (Np-237)	in irradiated nuclear material, in separated plutonium or in mixtures of uranium and plutonium	
	Depleted uranium (DU)	<0.7% U-235	
Indirect use nuclear material	Natural uranium (NU)	0.7% U-235	
	Low enriched uranium (LEU)	>0.7% U-235 and <20% U-235, (typically 3–5%) U-235	
	Plutonium (Pu-238)	>80% Pu-238	
	Thorium	Th-232	
Radioactive sources	Radioisotope thermoelectric	Pu-238, Cm-244 and Sr-90	

Analytical Labs in JAEA

JAEA's existing analytical laboratories can cover multi-purposes for detection of trace amount of nuclear materials, accountancy control, process control and quality control at following types of facility;

- CLEAR Laboratory / NUCEF
- Uranium refining and conversion
- Uranium enrichment
- Reprocessing
- Plutonium conversion
- MOX fuel fabrication
- Hot cell and R&D
- Research reactors
- Other

Laboratorv for Environmental Analysis and Research

General laboratories

JAEA)

CLEAR

Cleanness class is defined as maximum number of particles $(> 0.5\mu m)$ in 1 ft³. No cleanness-controlled rooms, e.g. normal office rooms, sometimes contain the particle more than one million.

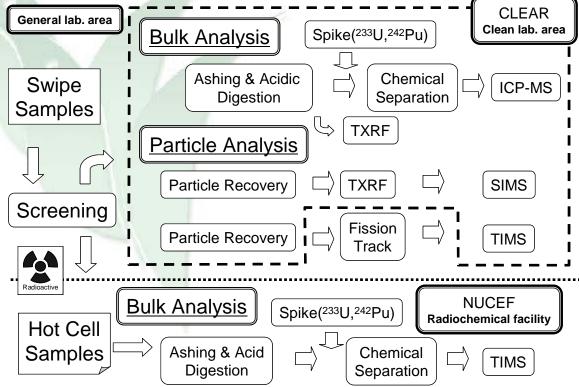
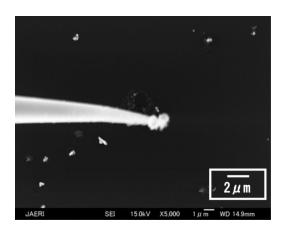
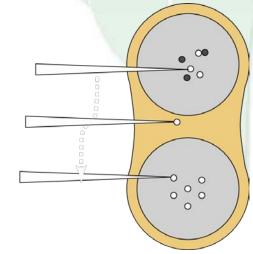


Figure 1 : Flow diagram of environmental sample analysis in JAERIO

Pick-up Particles (SIMS)

✤Particles pick up

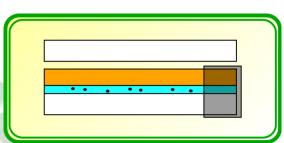




Particle recovery (Vacuum impactor)

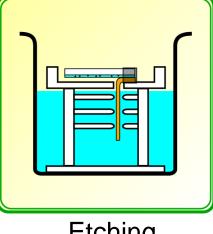
Scanning electron microscopy (SEM)

SIMS

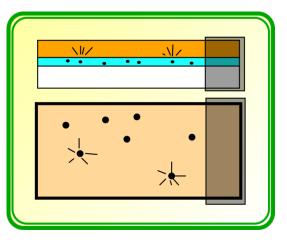

Particles pick up and transfer

FT-TIMS Method

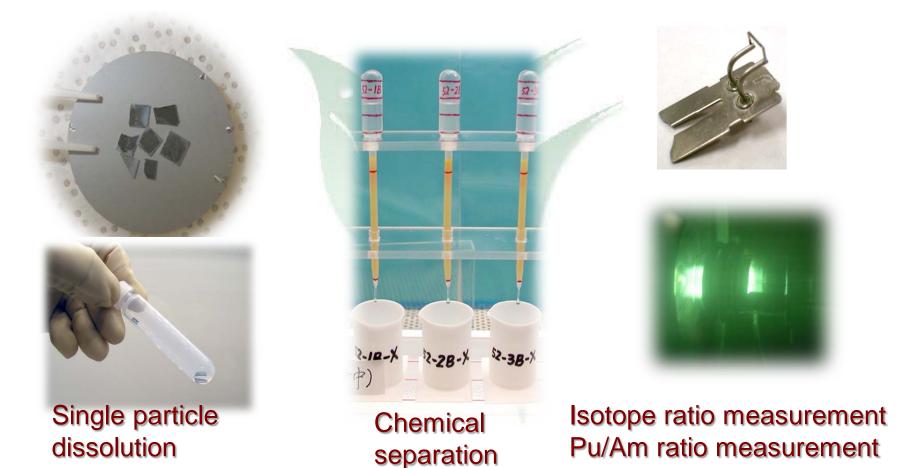
Collect particles on filter



Prepare irradiation sample


Neutron irradiation

Etching


Accurate method A lot of time to measure TIMS

12

Pu Age Determination for Pu and MOX Particle

Nuclear Fuel Cycle Facilities and Research Reactors

JNC-1(Tokai)

TRP (Tokai Reprocessing Plant)
PCDF (Plutonium Conversion Development Facility)
PPFF (Plutonium Center Plutonium Fuel Facility)
PFPF (Plutonium Fuel Fabrication Facility)
JNC Tokai R&D

AE,

JAER1(Tokai)

TCA (Tank-type Critical Assembly)

• FCA (Fast Critical Assembly)

NSRR (Nuclear Safety Research Reactor) •JPDR (dismantled) VHTRC (closed) •JRR-1 (dismantled) (Very High Temperature Reactor Critical Assembly) •JRR-2 (closed) JAERI Tokai R&D •Old JRR-3 (dismantled)• JRTF (closed) •JRR-3 (Reprocessing Test Facility) •JRR-4 SCF (NUCEF)

JAER3, JNC-2 (Oarai)

• JMTR

(Japan Material Testing Reactor)

• JMTRC (closed)

(Japan Material Testing Reactor Critical Assembly)

• HTTR

(High Temperature Engineering Test Reactor)

JAERI Oarai R&D

JoyoDCA (closed)

(Deuterium Criticality Assembly)

IRAF

(Irradiation Rig Assembling Facility)

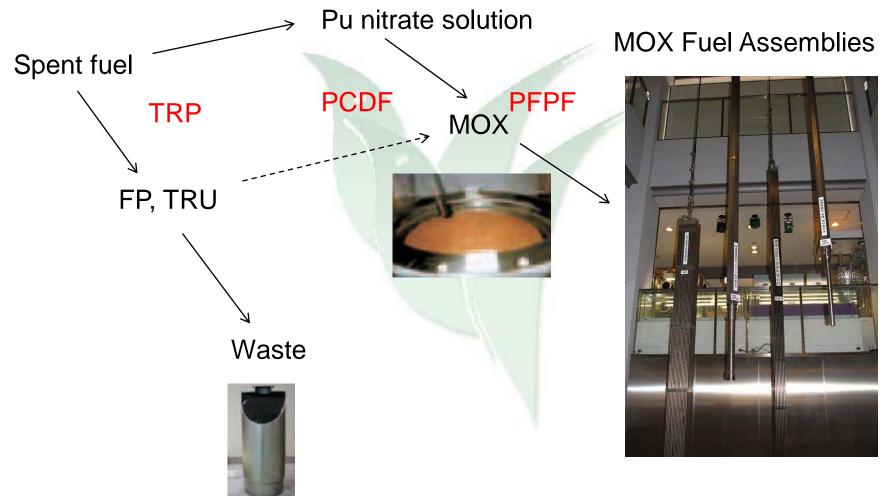
FMF

(Fuels Monitoring Facility)

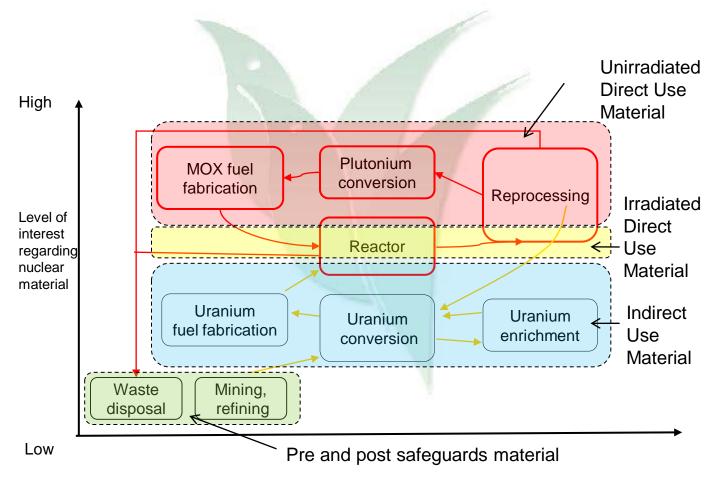
JNC Oarai R&D

JNC-3, JNC-4 JNC-5

• Fugen (closed)


- Monju
- Ningyo-Toge Uranium
 Enrichment Plant (closed)
- Ningyo-Toge Refining and Conversion Plant (closed)

Uranium Ore, Yellow Cake and UF₆



Nuclear Material

Preparation for Nuclear Forensics Analysis

Goals Towards Establishment of Response System for Nuclear Forensics

- Technically establish elemental, isotopic and impurity measurement of nuclear materials.
- Establish morphology analysis of particles
- Establish age determination of U and Pu
- Create domestic database and develop wider database in cooperation with foreign countries
- Establish how to identify/specify origin of nuclear materials from obtained signatures (attribute evaluation)
- Establish response system and organization in JAEA and discuss wider response system with other organizations including Japanese government

Areas to be Involved and R&D Candidates for International Collaborations

- International activities as GICNT and ITWG
- Participation in international round robins
- International and bilateral communication on database sharing
- Cooperation programs with USA and EU in development of new technologies

Collaborations

- U-age determination/Pu age determination
- Elemental/impurity analysis in small size samples
- Production of Reference certified materials of U, Pu for nuclear forensics
- Analysis of sample after explosion: U, Pu, FPs, RI (dirty bomb)
- Analysis of materials diffusion flow with simulation code
- Establishment of database (domestic data/international exchange)
- Training/education on nuclear forensics
- Establishment of international network
- HEU/Pu round robin
- Other QA/QC activities

Thank you