New condition for new Nuclear Energy in the World and in Russia

Evgeny Velikhov

JAEA/JIIA

International Symposium on Nuclear Nonproliferation and Peaceful Use on Nuclear Energy

Tokyo October, 4, 2007

Results of the 20th century

In the beginning of the 21th century the main problem, fast energy rate growth, has visualized. 1990-2000 - 1.2% a year

2001-2005 - 2.3% a year!

Two reasons of energy consumption growth.

1. Growth of the Earth population.

2. Alignment of energy consumption between developed and less developed countries.

1. Growth of the Earth population.

The most probable estimation in 2050 is that there 9 billions pupil will live on the Earth. Energy production must be increased in 1.5 times.

2.Alignment of energy consumption between developed and less developed countries.

Alignment of energy consumption will require to increase energy production in 3 times

Balance of energy resources (the most optimistic)

■ Oil □ Gas ■ Coal ■ Hydro ■ Biomass and Was ■ Other Renewabl □ Nuclear ■ backlog demand

Scale of the 21st century

By 2100 the population of the Earth will become about 12 bill.pupil

Energy resources price growth

Electricity price

The new economic situation increases nuclear energy attraction and widens its facilities

Fuel Cycle of NE

Closed Fuel Cycle: Fast Burner Reactors (BR=0.1)

Natural uranium consumption by 2100 – 29 million tons

Fuel Cycle of NE

Closed Fuel Cycle: "High" Breeders (BR=1.6)

Natural uranium consumption by 2100 – 12 million tons

Basic Fuel Cycle Parameters for Various Scenarios OPC – Open Fuel Cycle, CPC- closed fuel cycle

Maximum SWU, t/y

Closed fuel cycle based on fast reactors with breeding solves the problem of natural uranium limitation

Development of Thorium Fuel Cycle Since 2050

Natural uranium consumption by 2100 – 11 million tons

Thorium fuel cycle expands resource base of nuclear energy in many times. It extends nuclear energy using also and for non-electric purposes.

Nuclear energy risk potential for non-proliferation purposes in dependence on its structure.

Fissile Material (Pu+U-235) Production in Nuclear Energy System

Burner

BR=1.6

NES' weapon-grade material production capacity, t/y

NES' weapon-grade material production capacity, t/y

The capability of fissile materials producing, which could be used for military purposes, insignificantly depends on the nuclear power structure

International Nuclear Fuel Cycle Centers

Production and trans-regional flows of fresh and irradiated nuclear fuel by 2050

t/year, N=2000 GW, "traditional" model

	Developed	l countries	Developing countries		
	NF	SNF	NF	SNF	
Production in 2005	16 000	4 800	5 000	1 100	
Production in 2050	36 000	29 000	12 000	9 000	
Flows of 2005	11 000	9 000	-	-	

Structure of Russia Electric Power Industry Electric capacities, GW

Inc. Power	system	TPP	Hydro	NPP	
Centre		34.6	2.3	11.8	
Middle V	olga	13.6	6.2	4.1	·
Ural		39.8	1.8	0.6	
North-we	st	11.8	2.9	5.8	s T
Northern C	aucasus	9.7	5.4	1 👝	10 m m
Siberia		23.6	22.3		
East		8.2	3.9	0.05	
Structu	re of ft	rel consu	umption,	¥ %	
Inc. Power system	GA	S	OIL	COAL	
Centre	79)	9	12	
Middle Volga	91		8	1	
Ural	76	5	7	17	The main task - to reduce
North-west	56	5	25	19	consumption of gas
Northern Cauca	asus 70)	10	20	
Siberia	6		4	90	
East	5		9	86	

- πισπαιώται σχηροσιαπ - πασίζαι ποηριοποιατιστιάτιστ σασσία σσο σί πασίσαι εποιχή τολελι σχηροσιαπιστιλη στατη, τοικγό, 2007

Three stages of development of Russian NE

I -restoration of the Industry, II- development of fast reactors and the closed fuel cycle, III- construction large-scale of NE.

