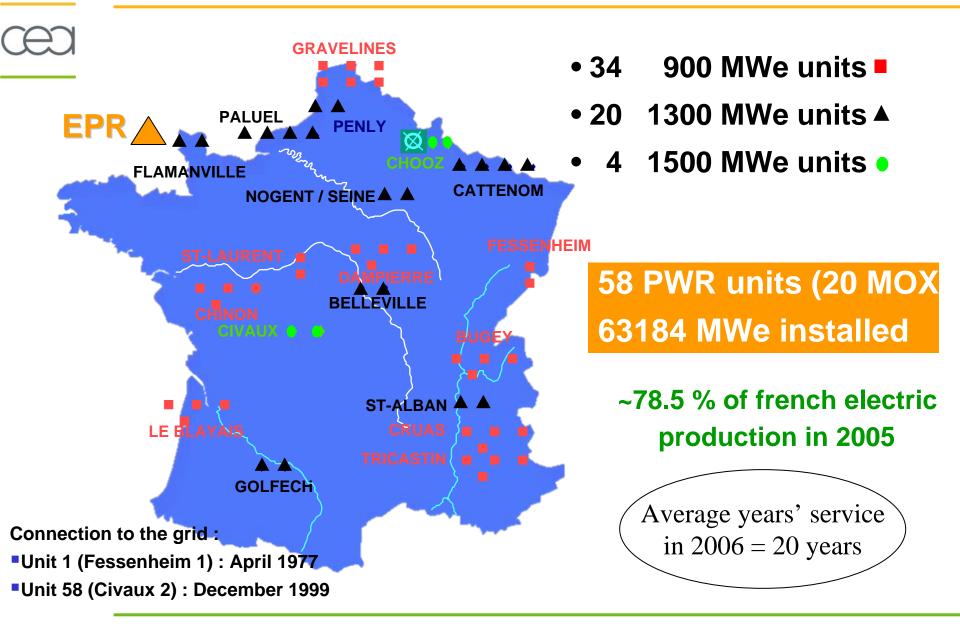
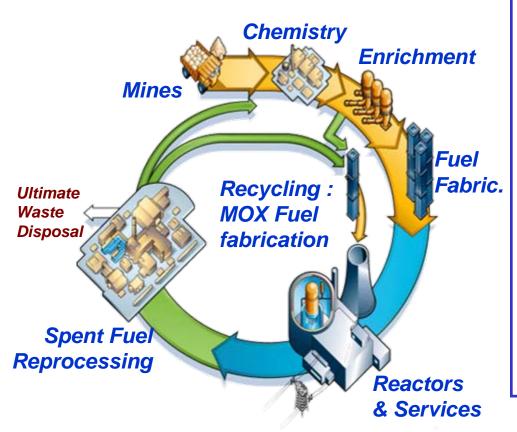


International Symposium

Tokyo, september 4th 2007


Current Status of Peaceful Nuclear Energy in France

Olivier CARON


French Atomic Energy Commission

1

The French Nuclear Program at a glance

A coherent Fuel Cycle Strategy

More than 25 years of unequalled experience in France :

- 58 PWRs → 415 TWh in 2004
- Until now: ~ 20 000 Mt_{HM} spent fuel reprocessed and more than 1200 Mt_{HM} MOX fuel recycled
- 1100 Mt_{HM} /yr of spent fuel discharged from the French PWRs
- Up to 1 600 Mt_{HM} /yr of spent fuel reprocessed (domestic + foreign)

....ctd....

- Recycles
 Saves
 Saves
 Costs less than
 Reduces by
 Reduces by
 Reduces by
 The amount of wastes
 the waste radiotoxicity
 - Adapted technologies allow a safe conditioning of wastes to guarantee their long term confinement and stability, for dozens of thousands of years

Vitrified wastes and CSD-V canister Alteration of glass by water : < 0,1 % at 10 000 years

4

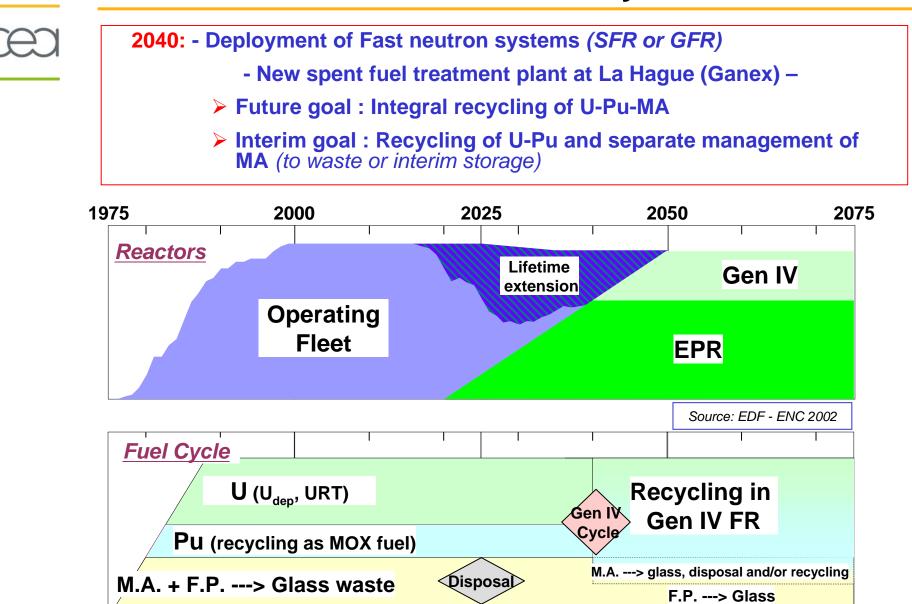
A new French nuclear context

œ

Public debates and a new legislation

2005 / 2006 : Two public debates (Radioactive Waste and EPR)

✓ January 2006 : a new prototype


- \checkmark The construction of a 4th generation prototype reactor in 2020
- ✓ In the frame of a new law on nuclear transparency, an independent authority will be created

✓ 2006 : two new legislative Acts

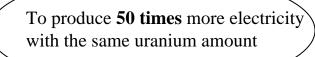
- On the 13th of June 2006, a new Act on nuclear transparency and security
- On the 28th of June 2006, a new Act on sustainable management of radioactive waste

- A national plan (PNG-MDR) on radioactive materials and radioactive waste management (up-grading by Parliament every three years)
 - A step by step programme of HLLL waste management, including the complementarity of 3 solutions :
 - Partitioning-transmutation :
 - 2012 : assessment of 4th Generation reactor technologies
 - 2020 : operation of a prototype fast reactor
 - Geological disposal for ultimate HL waste :
 - 2015 : authorization to build
 - 2025 : operation
 - Intermediate storage (as needed)
 - A secured financing of radioactive waste management and R & D (Dedicated fund)

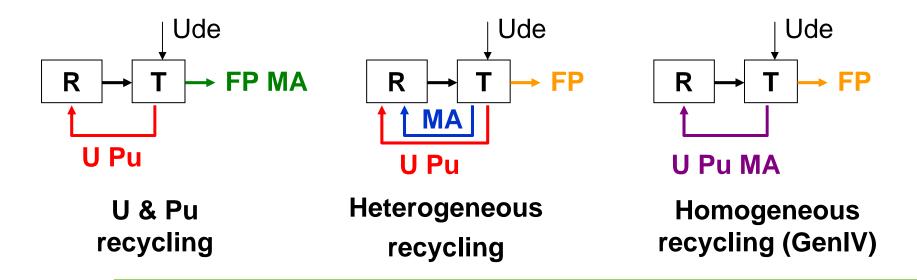
Scenario with FR and New Fuel Cycle Plant in 2040

- A matured concept, based on experience feed-back of current PWRs
- Significant improvements in safety

 Under construction in Finland at Olkiluoto



- July 05 : French Energy orientation Act
 - A Gen III plant operational by 2012
- Oct 05 Feb 06 : public debate to build a First-Of-A-Kind EPR in Flamanville
- October 10th 06 : Laying of the foundation stone in Flamanville


\rightarrow Natural resources conservation

- → Waste minimization
- → Proliferation resistance

9

All paths should be kept available, **they could be used in sequence.**

- Mankind needs energy,
- Oil and gas are becoming scarce and expensive,
- Climate change due to CO_2 emissions is a concern

Nuclear energy is a necessity

 Expansion of installed capacity in the next few decades : will rest upon LWRs.

- The countries which will build reactors in 2050, aimed at operating until 2110, will have to take into consideration uranium supply issues
- There is a need for a clear and proven provisions for waste management

Generation IV : Making Nuclear Energy Sustainable

œ

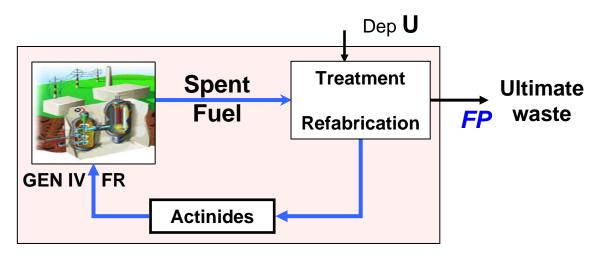
New goals for sustainable nuclear energy

Continuous progress :

- Economically competitive
- Safe and reliable

Break-throughs :

- Waste minimisation
- Natural resources preservation
- Proliferation resistance


Heat for industrial processes, hydrogen, drinkable water,

Gen IV and proliferation issues

- FBRs already built operate with a Uranium core and fertile blankets.
- The reference concept selected by the Gen IV international Forum (GIF) is a core without blankets with an breeding ratio near to 1
- Global recycling of actinides improve the proliferation resistance

Characteristics :

- Large capacity
 - Lower the cost furthermore
 - Adapted to increasing needs worldwide (« fuel treatment centers »)
- Design adapted to a larger spectrum of fuel type
 - High fissile isotopes content (i.e. MOX)
 - Very high burn-up fuel
- Co-management of U & Pu
 - New security standards worldwide
 - Enhance MOX fuel performances
- Integration of reprocessing and fuel refabrication
 - Limit fuel transports and storage needs
 - Flexibility in material management
- Reservations to introduce advanced technologies