Nuclear Proliferation Resistance in Feasibility Study on Commercialized Fast Reactor Cycle Systems

The 1st International Nuclear Nonproliferation Science and Technology Forum
May 19, 2006

Yutaka SAGAYAMA
Japan Atomic Energy Agency

Contents

• Status and prospective of the Feasibility Study on Commercialized Fast Reactor Cycle Systems (FS)
• Study on nuclear proliferation resistance for FS
 – Nuclear fuel recycling
• Further approach for future FR fuel recycling
 – Reactor
 – Fuel recycling
• Proposal for future development
Steps of the Feasibility Study

- Domestic collaborations with research organizations, universities, engineering companies, etc.
- International cooperation based on GEN-IV, I-NERI, etc.

Five Goals of the Feasibility Study

Safety
- Risks caused by introduction of FR cycle should be small compared with risks that already exist in society.

Economic Competitiveness
- Achieve power generation cost comparable to that of future LWRs and other energy resources.
- Ensure cost competitiveness in the global market.

Reduction of Environmental Burden
- Reduce the amount of radioactive waste generated in the course of plant operation and maintenance as well as decommissioning.
- Reduce the radiotoxicity of radioactive waste by means of burning or transmuting long lived nuclides.

Efficient Utilization of Nuclear Fuel Resources
- Produce sustainable nuclear fuel.
- Respond to diverse needs for energy resources.

Enhancement of Nuclear Non-Proliferation
- Reduce burden of nuclear Physical Protection and safeguards (no pure plutonium in any FR cycle process and increase radioactivity of fuel materials).
- Effectively operate non-proliferation system (remote process and monitoring system.)
<table>
<thead>
<tr>
<th>Design requirement</th>
<th>Criteria for evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design which is considered on physical protection (PP) and safeguards (SG)</td>
<td>Efficient application of system for PP and SV by utilizing remote surveillance and automation</td>
</tr>
<tr>
<td>No isolated Plutonium</td>
<td>No plutonium isolated through whole processes</td>
</tr>
<tr>
<td>Limited access by high exposure from lower decontaminated and/or TRU fuel</td>
<td>Realize limited access to obtain and utilize lower decontaminated and/or TRU fuel</td>
</tr>
</tbody>
</table>

Nuclear Proliferation Resistance of Fuel Recycling – Design with consideration on PP and SV –

Technical requirement on PP
- Installing barrier and detection system for invasion

Technical requirement on SV
- Confirmation of material balance and inventory change by determining area of material balance and points for analysis and measurement
- Corresponding to inspection
- Acting sealing, confinement by surveillance and surveillance

- Investigated on application of current SV system including NRTA (Near Real Time Accounting)
- Applicable to Advance Aqueous Reprocessing
- Investigated on potential for rationalization of SV

- Considered current system
Advanced Aqueous Reprocessing
What is the “NEXT” Process?

Plutonium partitioning for Advanced Aqueous Reprocessing

- No Pu partitioning in solvent extraction
 - Increased technical difficulty to isolate Pu
- Adjustment of ratio of U : Pu by uranium crystallization
 - Major part of U is separated as solid uranyl nitrate
 - Inherently difficult to isolate Pu from U and fission products, practically impossible to separate Pu from dissolver solution of spent fuel

Practically impossible to isolate Pu

Disassembling/decladding
Dissolution/clarification
Crystallization
Extraction chromatography
Co-extraction
Co-stripping (U/Pu/Np recovery)
Solvent regeneration

High level liquid waste
Concentration
Adjusting Pu content

New technologies
Conventional technologies

U/ TRU (product)
U (product)

Criteria of Evaluation for Nuclear Proliferation Resistance

Values in parenthesis are weight.

Extrinsic Resistance
- Export control
- Safeguards
- Physical protection

Intrinsic Resistance
- Access difficulty
- Handling difficulty
- Conversion difficulty (Pu)
- Nuclear weapon unattractiveness

Investigating reprocessing which co-recovers whole actinides
Investigating production of low grade Pu in reactor

The International Nuclear Nonproliferation Science and Technology Forum, Tokyo, 2006
A study on enhancement of nuclear proliferation resistance in a reactor system

Target: No weapon-grade plutonium in a system

Spec. of a large MOX-fueled core

- Thermal power: 3570 MW
- Electric power: MW
- Operation cycle length: 800 day
- Fuel exchange batch: 4
- Average fuel burnup: 147 GWd/t
- Breeding ratio: 1.1

Pu isotopic composition (239Pu/240Pu)
- Fresh fuel (Core): 57% / 34%
- Discharged fuel:
 - Core: 54% / 35%
 - Radial blanket: 95% / 5%
 - Axial blanket: 90% / 9%

Addition of low grade Pu fuel to the blankets
A case of 5% addition

Pu isotopic composition in discharged fuel (239Pu/240Pu)
- Core: 55% / 35%
- Radial blanket: 69% / 24%
- Axial blanket: 71% / 23%

Change of Power Share
- Core: Blanket
 - 93% : 7%
 - 88% : 12%

Influence
- Plutonium inventory: +14%
- Breeding ratio: -0.03
- Average fuel burnup: -5.5%
Addition of low-grade Pu into blankets is effective for the degradation of discharged Pu from blankets.

Pu in blankets becomes reactor grade by more than 3% of the addition.

The deterioration in breeding ratio could be endurable with design changes.

Further evaluation is necessary on the impact to the fuel fabrication cost.

Pu composition in discharged blanket with low grade Pu addition

- Pu isotopic composition at discharge (%) vs. content of low-grade Pu in fresh blanket (%)

Proposal for Improving Proliferation Resistance

- Acnides Co-recovery Reprocessing
- Advanced Aqueous Reprocessing
- PUREX type reprocessing

Axis for proliferation difficulty:

- H: High
- M: Medium
- L: Low

Axis for safeguards:

- L: Low
- M: Medium
- H: High
Study of Improved Reprocessing Considering Non-Proliferation by Means of Actinides Co-recovery

Conclusion

- For FS (FR cycle development in Japan), proliferation resistance shall be an important goal of development and R&D will be conducted to enhance “intrinsic” resistance.
- “Extrinsic” proliferation resistance will be enhanced by investigating methods for safeguards and by its application to design study although its stage is at conceptual design.
- International cooperation with IAEA and countries concerned is essential for suitable adaptation to changing circumstance of nuclear proliferation.