

Consequence analysis of a postulated nuclear excursion in BWR spent fuel pool using $1/f^{\beta}$ spectrum model of randomization

Irwan L. Simanullang

Criticality Safety Research Group Fuel Cycle Safety Research Division Japan Atomic Energy Agency

Background

Concept of random media model & New calculation procedure

Fuel Assembly of BWR STEP3 model ⁴

- RWF is the sum of sine functions and is an approximate representation of the dynamical system state reached via extreme disorder.
- The spatial distribution of fuel debris is expected under the extreme physical disorder ("1/f spectrum" model⁴).
- In this study, $\beta = 2$ (Brownian motion) was assumed.
- [,] 100 replicas were generated using the RWF.

⁴B. R. Frieden, "Spectral 1/f noise derived from extremized physical information," vol. 49, no. 4, 1994.

4. Distribution of temperature coefficient of reactivity (α_T)

Objective

To obtain α_T distribution under the random media model.

- The number of fissions can be determined from the temperature coefficient of reactivity.
- A uniform temperature coefficient was proposed to simplify the calculation.
- The temperature was varied from 25 to 1000 °C for each replica.

 α_T : uniform temperature coefficient [1/K] T₁, T₂: temperature [K] ρ_1 , ρ_2 : reactivity at T₁ and T₂ k_1 , k_2 : effective multiplication factors at T₁ and T₂

Objective

To obtain the number of fissions distribution under the random media model.

 β = delayed neutron fraction K = inverse heat capacity

Nordheim-Fuchs (N-F) Model

- An analytical approximation to obtain the number of fissions in the first peak power.
- Based on one point kinetics equation (only prompt neutron is considered).
- Initial reactivity insertion (ρ_0) > 1\$.
- α_T values are obtained from the previous step.
- K is assumed to be constant.

Energy released per fission \approx 200 MeV 1 MeV = 1.602 x 10⁻¹³ J

Results

- The number of fissions per volume fluctuated from 4 x 10¹⁹ to 15 x 10¹⁹ fissions/m³.
- It has positive skewness, therefore there is a small possibility of an incredibly high number of fissions.

THANK YOU