

Rep 06-号外1 2006.6.1

OECD/NEA-IAEA,2006(レッドブック 2005)が発刊されたので、要点のみ紹介し、 詳細は改めてレポートで報告することとする。

- 1. レッドブック2005年版では、2003年版に比べてウラン資源量が若干増加した。この大きな要因は、本質的に資源が増えたのではなく、ウラン価格の上昇に伴い鉱石のカットオフ品位が下がり、回収可能な資源量が増えたことによる。
- 2. 資源区分名称も若干変更された。
 既知資源(Known Resources)⇒発見資源(Identified Resources)
 推定追加資源 I (EAR-1)⇒推定資源(Inferred Resources)
 推定追加資源 II (EAR-2)⇒予測資源(Prognosticated Resources)
- 3. 2004年の生産量40,263tUは、世界の需要量67,320tUの約60%を満たし、残りは二次供給(余剰在庫、核軍縮HEU、劣化ウラン再濃縮、回収ウラン等)で賄われた。
- 4. ウラン価格の上昇は、世界の主要生産センターの開発計画を促進し、需給将来見通 しに大きな変化(改善)がみられた。しかし、鉱山の生産は未だかつてフル容量で 行われたことがない(最大89%)ので、特に二次供給が減少する2015年以降の需要 を満たすためには、さらなる生産容量の拡張が必要。
- 5. 資源利用可能年数の表においては、プルサーマルと混合サイクルの項目が削除され た代わりに、燐酸塩鉱床中のウランを合わせた年数が追加された。

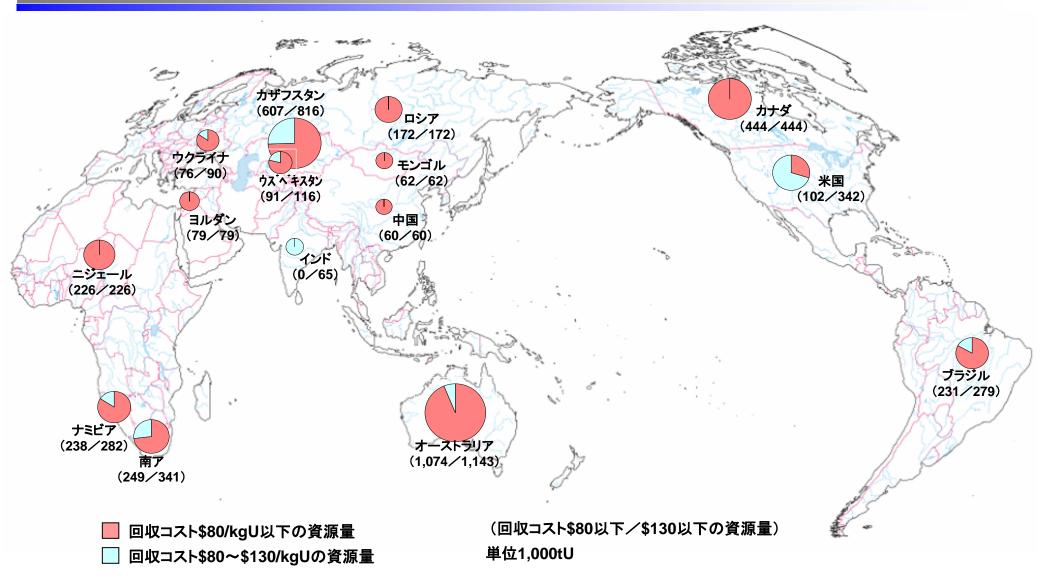
世界のウラン資源量

	発見資源(万tU)		未発見資源(万tU)		在来型資源
コスト区分	確認資源	推定資源 (推定追加 資源 I)	予 測資源 (推定追加 資源Ⅱ)	期待資源	総計(万tU)
コスト区分なし	-			298(310)	
<us\$130 kgu<="" td=""><td colspan="2">474(459)</td><td>252(225)</td><td></td><td>1, 480</td></us\$130>	474(459)		252(225)		1, 480
(<us\$50 td="" ポンドu3o8)<=""><td>330(317)</td><td>145(142)</td><td></td><td>456(444)</td><td>(1, 438)</td></us\$50>	330(317)	145(142)		456(444)	(1, 438)
<us\$ 80="" kgu<="" td=""><td colspan="2">380(354)</td><td>170(147)</td><td></td><td></td></us\$>	380(354)		170(147)		
(<us\$30 td="" ポンドu3o8)<=""><td>264(246)</td><td>116(108)</td><td></td><td></td><td></td></us\$30>	264(246)	116(108)			
くUS\$ 40/kgU (くUS\$15/ポンドU3O8)	275(252)				
	195(173)	80(79)			

()内の数字はレッドブック 2003

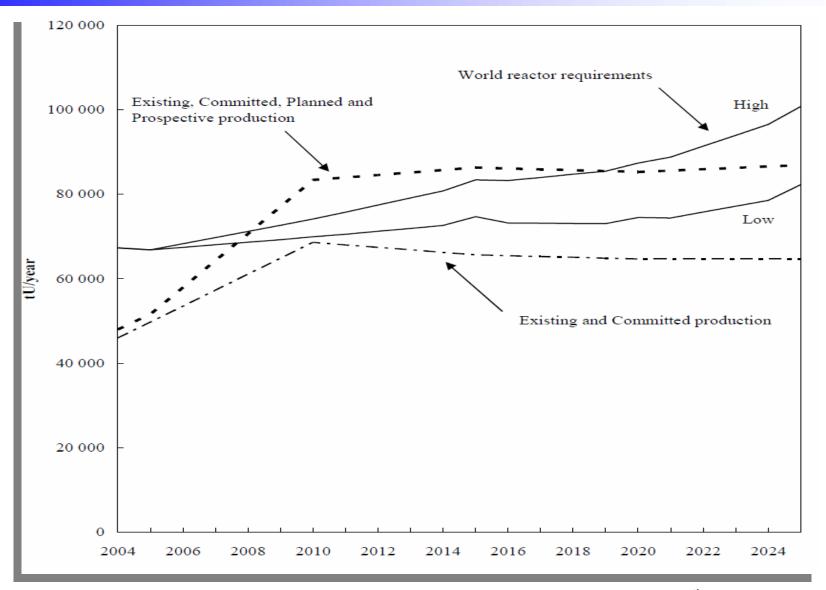
発見資源:発見済みの資源であり、規模・品位・形状が明らかな鉱床中に存在する「確認資源」と

鉱床の規模・特性に関するデータが不十分な「推定資源」に区分される。


予測資源:既存鉱床の地質的延長に、存在が間接的事実を基に推定される未発見資源をいう。

期待資源:特定の地質鉱床地帯の中に期待される未発見資源をいう。

データ: OECD/NEA-IAEA,2006(レッドブック 2005)


世界のウラン資源分布(在来型発見資源)

データ: OECD/NEA-IAEA,2006(レッドブック 2005)

2025年までの世界のウラン生産容量と需要見通し

出展:OECD/NEA-IAEA,2006(レッドブック 2005)

ウラン資源の利用可能年数

炉/燃料サイクル ⁽¹⁾	在来型発見資源 ⁽³⁾ の 耐用年数 ⁽²⁾	在来型資源 ^⑷ の 耐用年数 ^⑵	在来型資源と燐酸塩鉱 床中のU ⁽⁵⁾ を合わせた 耐用年数 ⁽²⁾
現在の燃料サイクル (軽水炉、ワンス・スルー)	85	270	675
高速炉燃料サイクル (完全リサイクル)	2, 570	8, 015	19, 930

データ: OECD/NEA-IAEA,2006 (レッドブック 2005)

* 1:燃料サイクルの条件特性: OECD/NEA, Trends in the Nuclear Fuel Cycle,2003より抜粋

	LWR ワンス・スルー	FR完全リサイクル
燃焼度 (GWd/tHM)	60	123
濃縮度(%)	4.9	_
天然U(t/TWh) 濃縮作業量 SWU	20.7 15,825	0.7 (depl.) —

* 2:2004年の原子力発電量 2,638TWhe netをベースとした利用可能年数

*3:在来型発見資源量474.3万tU、*4:在来型資源合計量1,480万tU

*5:在来型資源合計量に燐酸塩鉱床中の推定ウラン量2,200万tUを加えた値