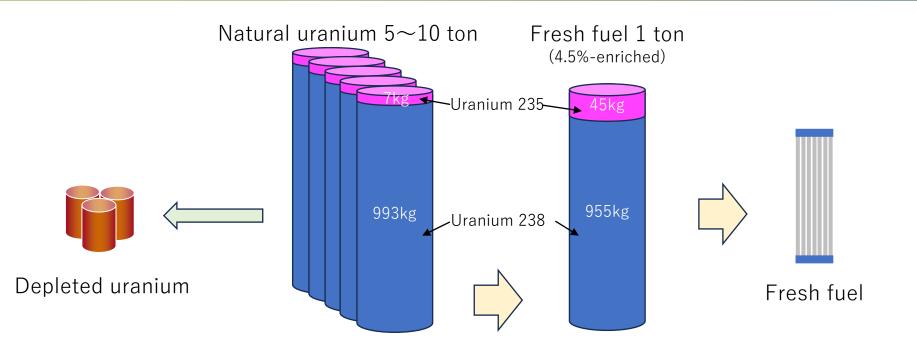


Technological Innovations to Change Radioactive Waste into Resources -The Key to Sustainable Nuclear Energy Utilization-

November 15, 2023

Sector of Nuclear Science Research Nuclear Science Research Institute Nuclear Science and Engineering Center Principal Researcher, SUGAWARA Takanori • **Synergy** of Nuclear × Renewable

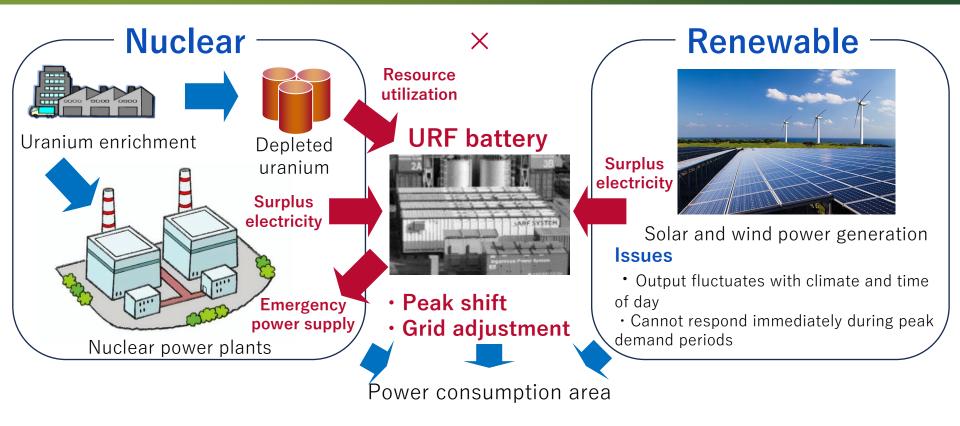
• Make nuclear power itself **Sustainable**


 Diversification of nuclear energy utilization (Ubiquitous) 1. Storage battery use of depleted uranium (**Synergy, Ubiquitous**)

 Utilization of elements in spent fuel (Sustainable)

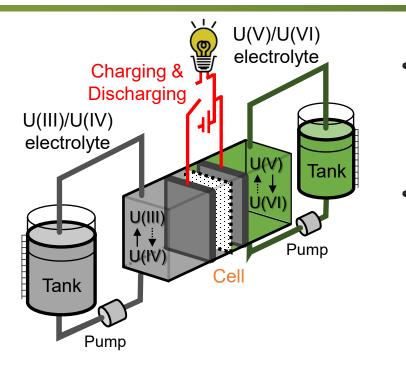
3. Power generation by heat and radiation (**Ubiquitous**)

16,000 tons

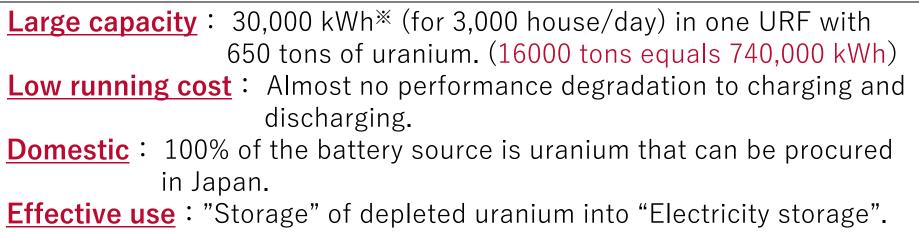

Background: Storage battery use of depleted uranium

- Fresh fuel for nuclear power plant is enriched uranium.
- Depleted uranium is stored for future use in fast reactors.
- About 16,000 tons of depleted uranium are stored in Japan (as of 2021)

Purpose

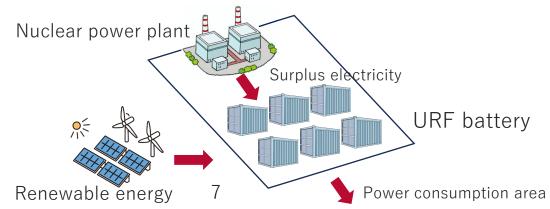


- Develop uranium-based redox flow battery (URF battery) to convert depleted uranium into resource.
- Store surplus electricity from renewable energy and nuclear power generation to contribute peak shift and grid stabilization.


"Sumitomo Electric Industries Redox Flow Battery 202103"

5 Sumitomo Electric Industries Technical Document

URF battery



- Storage battery that charges and discharges by promoting the redox reaction of ions through pump circulation.
- Focusing on the oxidation/reduction reaction of uranium (using the oxidation states of trivalent (U³⁺), tetravalent (U⁴⁺), pentavalent (UO₂⁺), and hexavalent (UO₂²⁺))

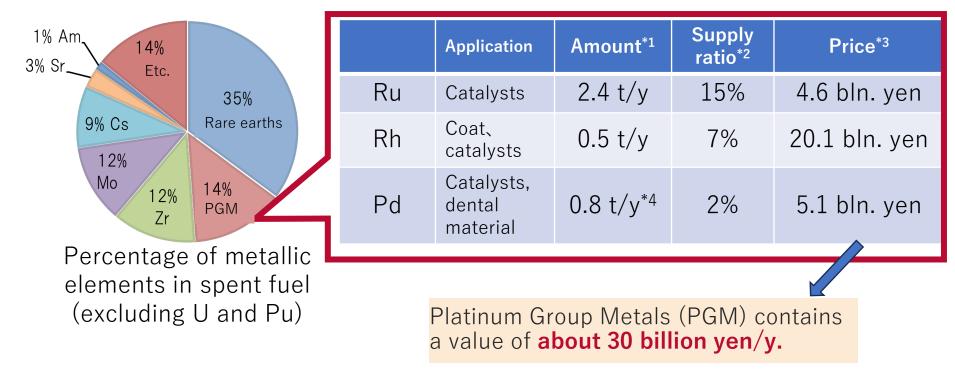
Advantages

- RF batteries in practical use are composed of vanadium.
 - Vanadium is completely dependent on foreign countries.
- The use of depleted uranium enables **domestic production.**
- More efficient than vanadium.
 - (Charging loss : Vanadium=20%, Uranium=3%)
- Disadvantages
 - Uranium valence becomes unstable due to contamination with water
 - \rightarrow Can be stabilized by electrolyte preparation
 - Handling of uranium as nuclear fuel material
 - \rightarrow Installation on nuclear power plant sites

- Since the report on the organic solvent-based uranium battery in 2007^{*1}, the only reports on the URF battery are published from Japan (JAEA and Tokyo Institute of Tech.)^{*2, 3}.
- Constructed a small-scale battery using uranium as active material and confirmed its operation
 - → If proof-of-principle is achieved, it will be **the first** achievement in the world.

Target	2023/R5	2024/R6	2025/R7	2026/R8	2027/R9	2028/R10	~2035
Developme nt of URF battery	<u>Proof-of-</u> principle of <u>URF</u> <u>battery</u>	Design of URF battery		<u>5Wh-class</u> <u>energy</u> <u>storage (100g</u> <u>scale of</u> <u>uranium)</u>		<u>5kWh-class</u> <u>energy storage</u> <u>(100kg scale</u> <u>of uranium)</u>	Achievement of <u>MWh-class</u> <u>energy storage</u> <u>(ton scale of</u> <u>uranium)</u>

Bold-underline indicates WORLD-FIRST

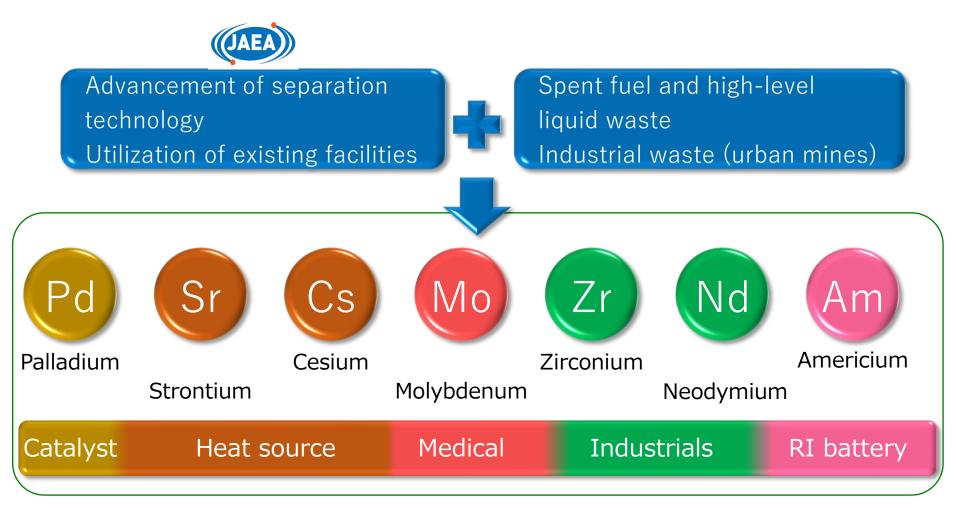

*1: T. Yamamura et al., J. Phys. Chem. C, 2007, 111, 50, 18812–18820.

*2: K. Ouchi et al., Chem. Lett., 2021, 50, 1169-1172.

*3: K. Takao, Dalton Transactions, 2023, 52, 9866.

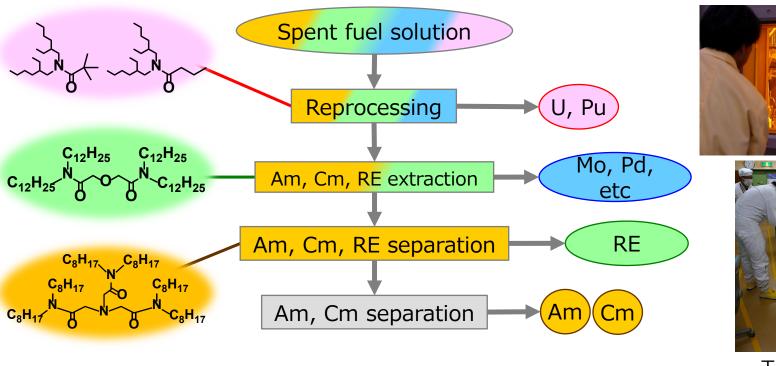
30 billion yen

Background: Utilization of elements in spent fuel



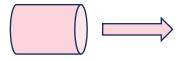
- Spent fuel is **a valuable resource** containing elements such as rare earths and PGM
- Developing supply sources leads to ensure resource security
 *1: 800 tons of spent fuel processed per year

10

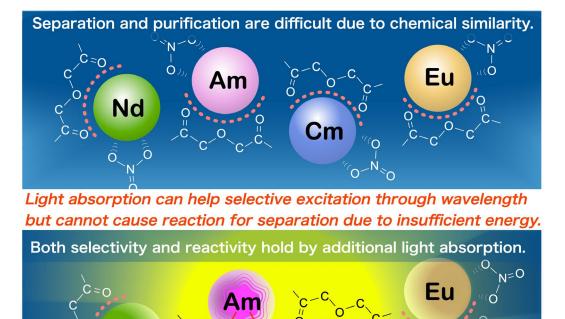

- *2: Percentage of annual domestic demand
- *2: Coloulated at the unit price of April 29, 20
- *3: Calculated at the unit price as of April 28, 2023
- *4: Even-odd separation of isotopes (ImPACT Fujita program result) will be performed, and only even-
- numbered nuclei are assumed to be used.

 Development of practical separation and utilization technologies for useful elements

Separation by solvent extraction



Schematic flow of SELECT process


Testing at NUCEF, JAEA

- Further development is underway to improve the solvent extraction process (SELECT process) developed by JAEA.
- This technology is effective in reducing the volume and hazardous level of radioactive waste by combining with nuclear transmutation.

Laser-assisted separation

Laser at a specific wavelength for Am(III) absorption

Laser-induced photochemical reaction enables a new separation scheme.

Nd

- Simplification of processes and reduction of secondary waste are expected because of the high selectivity.
 - S. Matsuda, et al., Science Advances, 8, 20 (2022).
 - Press release 2022/5/20, https://www.jaea.go.jp/02/press2022/p22052003/

Cm

Current Status and Future Prospects

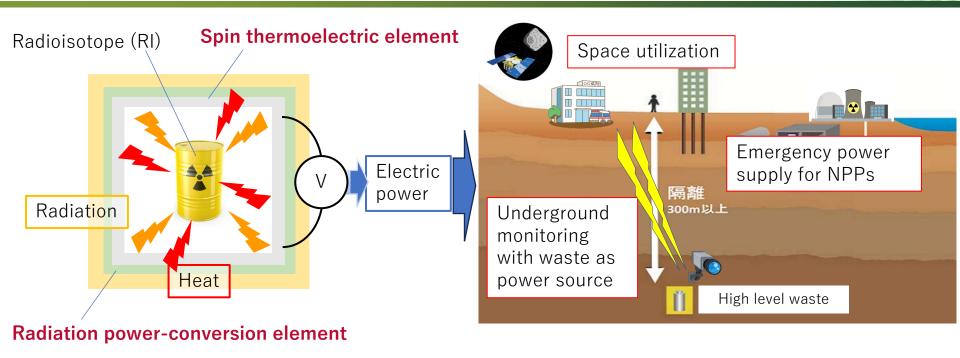
- Although research has been conducted to separate useful elements from spent fuel, it is still in the basic research stage and has not yet reached the stage of practical application.
 - In the ImPACT program^{*}, Pd 95% recovery was confirmed by wet electrolysis.
- Advancement of the separation process by solvent extraction (SELECT process) and development of the laser-assisted separation method.
- Application of technologies to urban mines.

Target	2023/R5	2024/R6	2025/R7	2026/R8	2027/R9	2028/R10	~2035
Enables separation of various useful elements from high-level liquid waste		Separate small amounts of Am for RI batteries		Target achieved with a few dozen grams of dissolution solution of spent fuel		<u>Target</u> <u>achieved with</u> <u>a few</u> <u>hundred</u> <u>grams of</u> <u>actual waste</u>	Target achieved with a few kilo- grams of actual waste

Bold-underline indicates WORLD-FIRST

4.8 kg

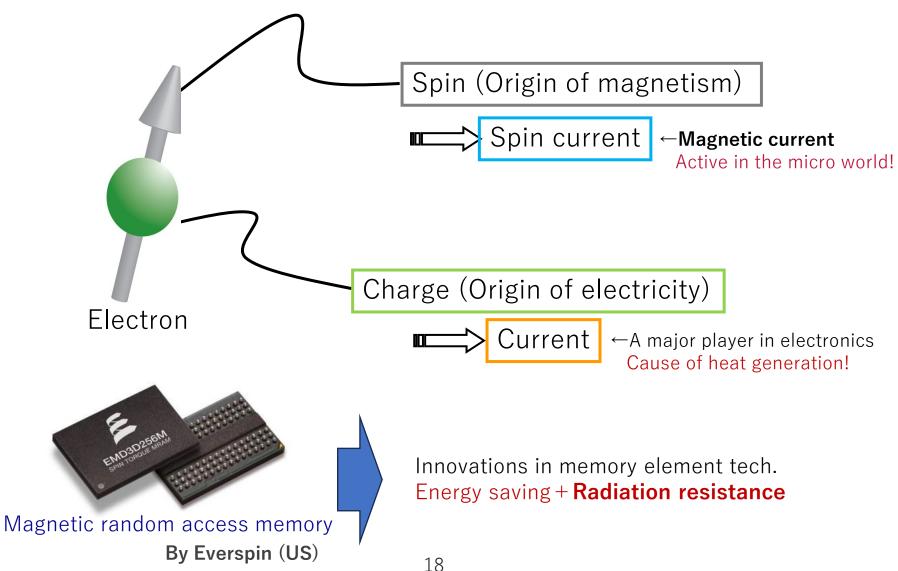
Background: Power generation by heat and radiation



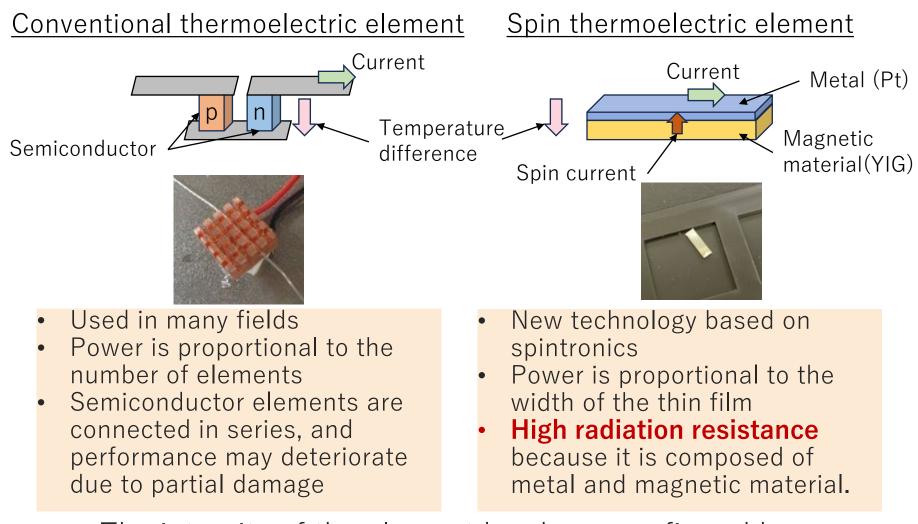
- Thermoelectric devices are sensitive to radiation.
- ²³⁸Pu has high heat generation but low radiation.
- Radiation tolerant thermoelectric element could expand the options for isotopes as heat sources.

https://inl.gov/mars-2020/ https://www.ornl.gov/news/ornl-produced-plutonium-238-help-power-perseverance-mars

Purpose



• Realization of semi-permanent, maintenance-free power supplies in harsh environments that are not easily accessible by humans.


Spintronics

Hybrid technology of electric and magnetics

Spin thermoelectric element

• The integrity of the element has been confirmed by irradiating it with 1 MGy of gamma rays

Power generation by radiation

Electric current

Electron flow

Sunlight

Electrode

semiconductor

semiconductor

Electrode

Hole

n-type

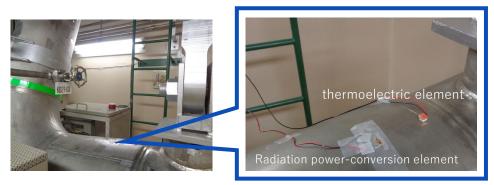
p-type

Power generating element

1,

Electron

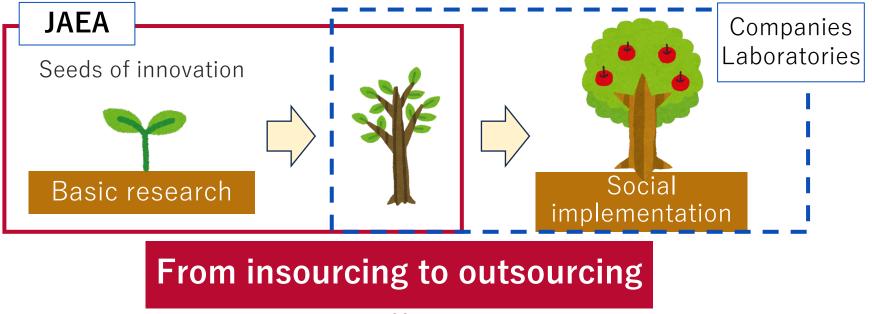
HAXPES (HArd X-ray PhotoElectron Spectroscopy) equipment @ BL22XU

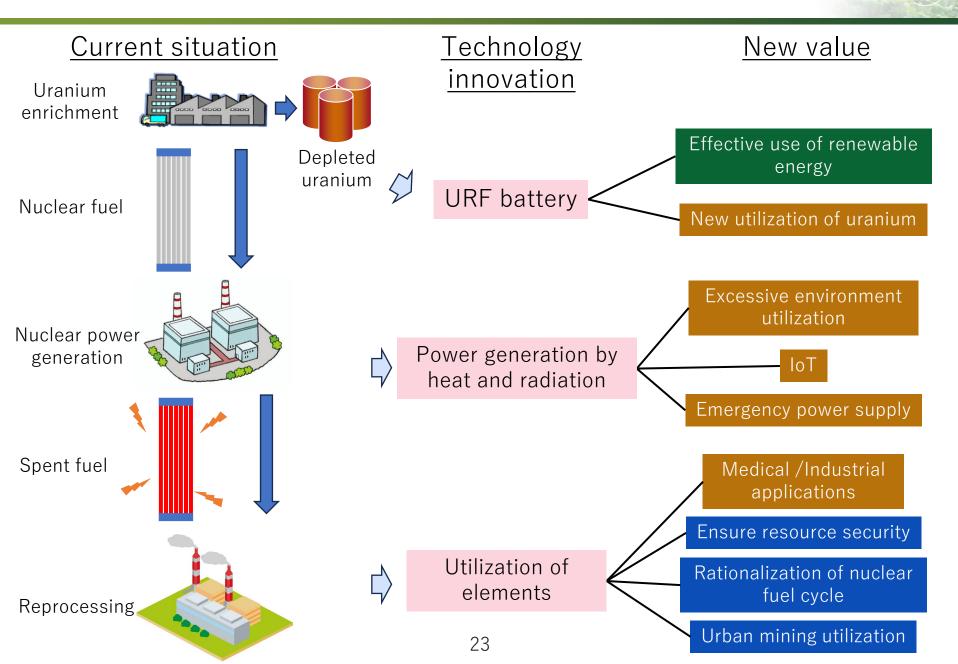

- Power generation from gamma rays instead of sunlight
- Performed the principle demonstration of Ni/SiC using synchrotron x-rays instead of gamma rays

Current Status and Future Prospects

- Proof of principle for both technologies has been confirmed.
 - Spin thermoelectricity $(4W/m^2 \text{ at } 10^{\circ}\text{C} \text{ difference})$, Radiation power generation $(1W/m^2 \text{ by } 30 \text{ keV}-6.6 \text{x} 10^{13})$
 - [photon/cm²/s])
- It is required to improve power generation efficiency and to demonstrate test using radioactive waste.

Target	2023/R5	2024/R6	2025/R7	2026/R8	2027/R9	2028/R10	~2035
Development of high efficient • Spin thermoelectric devices • Radiation power generation devices	Demonstration of power generation using RI, etc.		Demonstration of power generation using radioactive waste and spent fuel		<u>Completion</u> of prototype combined with RI batteries	<u>Achieved</u> <u>W-class</u> <u>power</u> generation	<u>Achieved</u> <u>kW-class</u> <u>power</u> generation


Bold-underline indicates WORLD-FIRST


Thermal and radiation power generation test in JRR-3 primary cooling system piping

Summary

- We promote research on the following technologies for converting radioactive waste into resources
 - Storage battery use of depleted uranium (Synergy)
 - Utilization of elements in spent fuel (Sustainable)
 - Power generation by heat and radiation (Ubiquitous)

Targeted image

Appendix

Туре	Lead	Nickel metal hydride	Lithium-ion	NAS	Redox flow	
Capacity	\sim MW-class	\sim MW-class	\sim 1MW	MW-class or higher	MW-class or higher	
Monitoring	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigcirc	
Safety	\bigcirc	\bigcirc	\bigtriangleup	\bigtriangleup	\bigcirc	
Resource	\bigcirc	\bigtriangleup	\bigcirc	Ô	△ (in case of vanadium)	
Heating during operation	-	-	-	Required (≧300°C)	-	
Lifetime (number of cycles)	17 years (3150)	5-7 years (2000)	6-10 years (3500)	15 years (4500)	Required evaluation (no limit)	

https://www.cas.go.jp/jp/seisaku/npu/policy04/pdf/20120705/sanko_shiryo1.pdf