Status of Fast Reactor Technology Development in Korea

FBR Seminar Tsuruga

March 8, 2012

Dohee Hahn

Status of Nuclear Energy in Korea

Status of Energy Supply in Korea

96.6 % of energy was imported in 2010

Year 2010

Korea's Energy Consumption

8th World Ranking

- Energy Consumption : 261 Mtoe
- * Ref: BP (2011), Statistical Review of World Energy

Korea's Energy & Oil Import

- Energy Import : 252 Mtoe
 (118 Billion USD, 27 % in total import)
- Oil Import : 147 Mtoe(69 Billion USD)
- * *Ref*: Korea Energy Economics Institute (2011)

* IEA, Energy balance of OECD countries 2011

Energy Demand and Electricity Generation

Electricity demand increases with the growth of economy
 Nuclear power plays a significant role for electricity generation

Nuclear Power Plants in Korea

Units [MWe]

Electricity Generation Cost in Korea

※ *Ref*: www.kosis.kr(2010. 02)

II Impact of Fukushima Accident

Actions after Fukushima Accident

Immediate Response to Fukushima Accident

- ✓ Emergency Response Team
- ✓ Close Communication with Public and Media
- ✓ Strengthened Environmental Monitoring
- ✓ Special Safety Inspection on Nuclear Facilities

Actions for Safety Enhancement

- Establishment of an Independent Regulatory Body: Nuclear Safety and Security Commission (NSSC)
- ✓ Implementation of Action Items Identified by Special Safety Inspection
- ✓ Planning for Strengthened Nuclear Safety Research
- ✓ IAEA Integrated Regulatory Review Service Mission

Results of the Special Safety Inspection

No Imminent Risks to Operating Nuclear Facilities

♦ 50 Action Items to Further Strengthen Defense in Depth

- \checkmark To minimize the impact of extreme natural disaster
- To make emergency power and ultimate heat sink available during accidents
- To ensure containment building integrity and emergency response capability

Examples of Action Items

- ✓ Re-evaluation of seismic capability for safety systems
- ✓ Installation of a mobile emergency generator and battery
- ✓ Installation of passive hydrogen removal equipment
- Modification of 'radiological emergency plan' considering multiple emergencies

Fukushima Lessons for Promotion of Nuclear Energy

- Securing a high level of safety is a pre-requisite for further development and utilization of nuclear energy
 - Very high level of safety is expected by incorporating the lessons learned from Fukushima accident
- Honest, sincere, continuous communication on nuclear and radiation safety is important

Speech from President Lee

UN High-Level Meeting on Nuclear Safety September 22, 2011 "I do not think that Fukushima accident should be cause to renounce nuclear energy; on the contrary, this is a moment to seek ways to promote the safe use of nuclear energy based on scientific evidence."

- "The use of nuclear energy is inevitable as there still remain technical and economic limits for alternative energy..."
- " we will actively utilize nuclear energy in accordance with our 'low carbon, green growth' policy."

Nuclear Promotion Policy

• Development of Nuclear Energy as Driver for Economic Growth

- ✓ Development of Small and Medium Reactors and Research Reactors
- ✓ Non-electricity applications including hydrogen production

Development of Advanced Technologies

- ✓ Spent fuel recycle technologies
- ✓ Environmentally friendly decommissioning technologies

Enhancement of Safety

- ✓ Safety against extreme natural disasters
- ✓ Center of excellence for safety R&D

Higher Standard of Living

- ✓ Medical application of radiation
- \checkmark Stable supply of medical isotopes

Expansion of Infra-structure

- ✓ High level human resources development
- ✓ International cooperation

National Energy Basic Plan

※ *Ref*: National Energy Committee (2008.8.27)

Comprehensive Nuclear Energy Promotion Plan for '12-'16

Why Fast Reactor?

Sustainability of Nuclear Energy

Fast Reactors

Reactor Transition Scenario - KAERI Study

Growth rate of electricity generation

- 2006~2030 : Planned
- 2031~2050 : 1.0%/year
- 2051~2100 : Reduced to 0%/year in 2100
- Nuclear share of 59.0% after 2030

Long-term Plan for SFR Technology Development

- ♦ 2012: Conceptual design for prototype reactor
- ♦ 2017: Safety Analysis Report for Specific design
- ♦ 2020: Specific design approval
- ♦ 2028: Prototype reactor construction

R&D Activities

STELLA-1 : <u>Sodium Integral effect Test Loop for</u> safety simulation and <u>A</u>ssessment

- Performance demonstration for mechanical sodium pump
- Evaluation of HX performance & verification of HX design codes

- STELLA-1 Main Characteristics
 - Working fluid: Sodium
 - Total electric power: 2.5MW
 - Sodium mass: 11ton
 - Max. sodium temp. : 600°C
 - HX capacity: 1.0MW_t
 - Max. HX flowrate: 10kg/sec
 - Nominal pump flowrate: 123kg/sec

Schedule	2009	2010	2011	2012	2013	2014
Construction of STELLA-1 and Performance Experiment	Design Req't STELLA-1 Design Construction of Power Supply & Sodium Storage Facility	Manufacture of STE	and Installation LLA-1	► Start-up test	Experin	ent

FBR Seminar, Tsuruga, 8 March 2012

STELLA-1

Metal Fuel Technology Development

Fuel Slug Manufacturing

- Establishment of Metal Fuel Slug Manufacturing System
- Manufacturing and Evaluation of Metal Fuel Slugs (U-10Zr) and Trial Rod
- Simulation for Remote Manufacturing of Metal Fuel Slugs

Advanced Cladding

- Design, Manufacturing and Evaluation of the Candidate Cladding Materials
- Preliminary Fabrication of HT9 Cladding Tube
- Barrier Technology Development for Preventing the FCCI

Performance Evaluation

- Irradiation of Metal Fuel in HANARO
- Development of Performance Evaluation Models for MA-bearing Metal Fuel

Fuel Slug Manufacturing System & Fuel Slugs

Advanced Cladding Materials & Barriers

Irradiation & TRU fuel Performance Evaluation Models

Generation IV International Forum (GIF)

• Objective : To promote collaboration on advanced reactor technologies

✓ 6 candidates : SFR, VHTR, SCWR, GFR, LFR, MSR

Status of SFR Projects

X=Signatory, D=Under Discussion

	EUR	FRA	JPN	PRC	ROK	RUF	USA
SFR System Arrangement (15 Feb 2006)	x	x	x	x	x	x	x
SFR <u>AF</u> PA (21 Mar 2007)	x	x	x	D	x	D	x
SFR <u>GACID</u> PA (Sept 2007)		x	x				x
SFR <u>CDBOP</u> PA (11 Oct 2007)	D	x	x		x	D	x
SFR <u>SO</u> PA (11 June 2009)	D	x	x	D	x	D	x
SFR <u>SIA</u> PA	D	D	D	D	D	D	D

JAEA-KAERI Collaboration based on Monju Experience

- Monju design, construction and operation experiences can play an important role for SFR technology development
 - \checkmark Safety analysis code validation with Monju experimental data
 - ✓ Development of under sodium viewing requirements
- Collaboration under the framework of GIF SFR Safety & Operation (SO) Project

✓ SO Project Plan of 15 December 2011

Temp measurement in Monju upper plenum

Under sodium viewing technology

JAEA's Sodium Handling Technology Training for KAERI

Objective

- To enhance KAERI's capability of sodium handling technology
- To share JAEA's experiences on FBR construction & operation

Course Overview

- Number of participants
 - 6 KAERI SFR experts
- Period
 - 16 Jan. 20 Jan. 2012 (5 days)
- Venue
 - International Nuclear Information and Training Center (INITC), Tsuruga Head Office, JAEA

• Main program

- Fundamentals of sodium handling
- Sodium loop operation and instrumentation
- Sodium fire extinction

Summary

Korea needs nuclear power plants to meet increasing demand for energy

- ✓ Energy security under poor energy resource situations
- Nuclear Promotion Policy remains the same after Fukushima accident
 - ✓ Higher level of safety should be ensured for expansion of nuclear energy utilization

SFR program plan

✓ Final goal is the construction of a prototype reactor by 2028

GIF SFR Collaboration

- ✓ Plans for JAEA-KAERI joint work have been established for SFR safety enhancement utilizing Monju operation in the near future
- Monju design, construction and operational experience can play an important role