Thermodynamic approach to evaluating complexants for environmental performance assessment and decontamination

Dhanpat Rai Rai Enviro-Chem, LLC

March 6, 2013

Objectives

Discuss methodology to:

- Evaluate different complexants for their usefulness in decontamination
- Determine the influence of a given complexant on solubilization

Discussion Format

- General approach
- Using EDTA as an example discuss:
 - EDTA data needs for simple systems (e.g., Pu(IV), Fe(III), Ca)
 - Data validation in complex systems
 - Application of data to decontamination and PA
- Using ISA as an example discuss:
 - ISA data needs for simple systems (e.g., Th, Fe(III), Np(IV), Ca)
 - Application of data to decontamination and PA
- Brief summary

Fundamental approach for selecting decontaminating agents

Important aspects of general approach

- Develop thermodynamic data in simple systems consistent with all of the available reliable data
- Validate data in complex systems (e.g., brines, in the presence of MI and CM)
- Evaluate whether a given ligand will increase solubility or be useful for decontamination, which will depend on relative:
 - Values of complexation constants
 - Metal ion activities

Example: Pu(IV)-EDTA

Using fundamental data determine whether EDTA can:

- Make Pu(IV) mobile in geologic environments
- Be used for Pu(IV) decontamination activities

Factors governing EDTA-mediated Pu mobility or decontaminating ability

- Oxidation state of Pu
- pH
- EDTA concentration in solution, which depends on
 - Total amount disposed or used
 - Microbial degradation
 - Adsorption
- Competing metal ions (e.g., Ca²⁺, Fe³⁺, Al³⁺, Mg²⁺)
 - Complexation constants
 - Activities of bare ions

Thermodynamic data for EDTA complexes

Prior to our study [Rai et al. 2008], reliable data were not available for:

- Pu(IV)-EDTA
 - Large number of species proposed [Pu(OH)EDTA⁻, Pu(OH)₂ EDTA²⁻, Pu(OH)₃EDTA³⁻, PuEDTA(aq), PuHEDTA⁺, Pu(EDTA)₂⁴⁻, PuH(EDTA)₂³⁻, PuH₃(EDTA)₂⁻]
 - Poor quality data with large variability
- □ Fe(III)) with OH and EDTA
 - Large number of hydroxide species proposed [FeOH²⁺, Fe(OH)₂⁺, Fe(OH)₄⁻, Fe₂(OH)₂⁴⁺, Fe₃(OH)₄⁵⁺]
 - Large number of EDTA species proposed [FeEDTA-, Fe(OH)EDTA2-, Fe₂(OH)₂(EDTA)₂⁴⁻, FeHEDTA(aq)
 - Poor quality data with large variability

Comparison of experimental PuO₂(am) solubility (Rai et al. 2001) to the literature model (Rai et al. 2008)

Thermodynamic interpretations of PuO₂(am) solubility data (Rai et al. 2008)

Important Pu(IV)-EDTA species

Literature	Rai et al. 2008
Pu(OH)EDTA ⁻	Pu(OH)EDTA ⁻
Pu(OH) ₂ EDTA ²⁻	Pu(OH) ₂ EDTA ²⁻
Pu(OH) ₃ EDTA ³⁻	Pu(OH) ₃ EDTA ³⁻
PuEDTA(aq)	NR
PuHEDTA ⁺	NR
Pu(EDTA) ₂ ⁴⁻	NR
PuH(EDTA) ₂ ³⁻	HR
PuH ₃ (EDTA) ₂ -	NR
NR = Not required	

Thermodynamic data for EDTA complexes

Prior to our study [Rai et al. 2008], reliable data were not available for:

Pu(IV)-EDTA

- Large number of species proposed [Pu(OH)EDTA⁻, Pu(OH)₂ EDTA²⁻, Pu(OH)₃EDTA³⁻, PuEDTA(aq), PuHEDTA⁺, Pu(EDTA)₂⁴⁻, PuH(EDTA)₂³⁻, PuH₃(EDTA)₂⁻]
- Poor quality data with large variability

□ Fe(III)) with OH and EDTA

- Large number of hydroxide species proposed [FeOH²⁺, Fe(OH)₂⁺, Fe(OH)₄⁻, Fe₂(OH)₂⁴⁺, Fe₃(OH)₄⁵⁺]
- Large number of EDTA species proposed [FeEDTA-, Fe(OH)EDTA2-, Fe₂(OH)₂(EDTA)₂⁴⁻, FeHEDTA(aq)
- Poor quality data with large variability

Fe(OH)₃(s) solubility as a function of pH (Rai et al. 2008)

Important Fe-EDTA species

Literature	Rai et al. 2008
Fe(OH) ²⁺	Fe(OH) ²⁺
Fe(OH) ₂ ²⁺	Fe(OH) ₂ ²⁺
Fe(OH) ₄ -	Fe(OH) ₄ -
Fe ₂ (OH) ₂ ⁴⁺	NR
Fe ₃ (OH) ₄ ⁵⁺	NR
NR = Not required	

Fe(OH)₃(am) solubility as a function of pH and EDTA (Rai et al. 2008)

Important Fe-EDTA species

Literature	Rai et al. 2008
Fe(EDTA) ⁻	Fe(EDTA) ⁻
FeOH(EDTA) ²⁻	FeOH(EDTA) ²⁻
Fe ₂ (OH) ₂ (EDTA) ₂ ⁴⁻	NR
FeH(EDTA)(aq)	NR
NR = Not required	

Recommended values for EDTA complexes (Rai et al. 2008)

Reaction	log ₁₀ K ^o
$Fe(OH)_3(s) = Fe^{3+} + 3OH^{-1}$	-40.35 ± 0.5
$Fe^{3+} + OH^{-} = FeOH^{2+}$	11.81 ± 0.5
Fe^{3+} + EDTA ⁴⁻ = Fe(EDTA) ⁻	27.66 ± 0.209
$Fe^{3+} + EDTA^{4-} + H_2O = FeOH(EDTA)^{2-} + H^+$	21.935± 0.226
$Pu^{4+} + EDTA^{4-} + OH^{-} = Pu(OH)EDTA$	38.422 ± 0.258
$Pu^{4+} + EDTA^{4-} + 2OH^{-} = Pu(OH)_2EDTA^{2-}$	47.093 ± 0.258
$Pu^{4+} + EDTA^{4-} + 3OH^{-} = Pu(OH)_{3}EDTA^{3-}$	51.769 ± 0.258
$Ca^{2+} + EDTA^{4-} = CaEDTA^{2-}$	12.36 ^a
^a Value from Felmy and Mason (2003)	

Impact of Fe(III) and Ca on Pu(IV) behavior in the presence of EDTA

- Iron and Ca are very common in geologic environments
- Thermodynamic data for Pu(IV), Fe(III), and Ca are now available
- □ Use thermodynamic data to predict potential Pu(IV):
 - Mobility in the presence of EDTA and Fe(III) and Ca
 - Decontamination with EDTA in the presence of Fe(III) and Ca

PuO_2 solubility in the presence of Fe(OH)₃(s) and 0.001 M EDTA (Rai et al. 2008)

Why does Fe(III) out competes Pu(IV) for EDTA binding?

It is because of both

- Relativley stronger complexation constant
 - $\log K_{\rm FeEDTA}^{-} = 27.66$
 - $\log K_{PuEDTA}^{0} \sim 26$
- Higher bare ion activity
 - log K_{Fe}³⁺ = 1.65 3pH

•
$$\log K_{Pu}^{4+} = -2.3 - 4pH$$

Experimental evaluation of the effect of Ca on PuO₂(am) solubility as a function of EDTA

PuO₂(am) solubility in the presence of 0.001 M Ca and 0.0001 M EDTA

Why does Ca out competes Pu(IV) for EDTA binding?

- It is due to higher bare ion activity
 - $\log K_{\rm Ca}^{2+} \approx -3$
 - $\log K_{Pu}^{4+} = -2.3 4pH$

Because of relatively higher bare ion activity Ca out competes Pu⁴⁺ for binding with EDTA even though the complexation constant for PuEDTA⁰ is over 13 orders of magnitude stronger than the CaEDTA²⁻

Conclusions for Pu(IV)-EDTA

- EDTA is not expected to make Pu(IV) mobile and it is not desirable decontaminating agent for Pu(IV) in complex geologic systems which is contrary to previously long-held opinions.
- Past opinions based on:
- Pu(IV) co-disposed with EDTA
- Pu(IV)-EDTA complexes implicated for Pu mobility in field studies [81CLE/REE; 82REE/CLE]
- EDTA complexes of Pu(V, VI) convert to Pu(IV) [57FOR/SMI; 73Cau/Gui; 96ALM/;98 REE/WYG]
- Pu(III) spontaneously converts to Pu(IV) [94RUS/QUI]
- **EDTA forms strong complexes with Pu(IV)** [57FOR/SMI; 73Cau/Gui]

Discussion Format

- General approach
- Using EDTA as an example discuss:
 - EDTA TDB needs for simple systems (e.g., Pu(IV), Fe(III), Ca)
 - TDB validation in complex systems
 - Application of TDB to decontamination and PA
- Using ISA as an example discuss:
 - ISA TDB needs for simple systems (e.g., Th, Fe(III), Np(IV), Ca)
 - Application of TDB to decontamination and PA
- Brief summary

Literature Th-ISA model [2006ALL/EKB] based on solvent extraction data

Modeling species ThISA³⁺ Th(ISA)₂²⁺ Th (ISA)₃⁺

Limitations of the 2006ALL/EKB study

- Conducted at only one ionic strength (1.0 M)
 - SIT ion-interaction parameters cannot be determined to convert equilibrium constants to zero ionic strength
- Conducted at only one pH (8.3)
 - Structure and type of species may be different at pH values other than 8.3
 - Impossible to differentiate between species they report that have the same ISA dependence but differ in H or OH (e.g., between Th(ISA)₂²⁺, and Th(OH)₃(ISA)₂⁻ or Th(OH)₄(ISA)₂²⁻)
- Extremely unreliable value (log β_1 = 12.56 ± 5.01) for the formation of Th(ISA)³⁺

ThO₂(am) solubility in 0.08 m NaISA [2009RAI/YUI]: Predictions using 2006ALL/EKB model

ThO₂(am) solubility [2009RAI/YUI]

Important Th-ISA species

2006ALL/EKB	2009RAI/YUI
ThISA ³⁺	NR
Th(ISA) ₂ ²⁺	NR
Th(ISA) ₃ ⁺	NR
	Th(OH)ISA ²⁺
	$Th(OH)_3(ISA)_2^-$
	Th(OH) ₄ (ISA) ₂ ²⁻
NR = Not required	

Observed and predicted Th distribution coefficients: 1.05 m NaClO₄, pH 8.3, 25°C

Fe(OH)₃(s) solubility in NaISA [2012RAI/YUI]

Fe(III)-ISA species based on our studies [2004RAO/GAR and 2012RAI/YUI]

Important in wide range of pH values

- Fe(OH)₂ISA(aq)
- Fe(OH)₃(ISA)₂²⁻

Important only in acidic conditions

- FelSA²⁺
- Fe(ISA)₂⁺
- Fe(ISA)₃⁰
- Fe(ISA)₄⁻

Thermodynamic data for the Th-Fe-OH-ISA system

Reaction	$\log_{10} K^0$	Reference
$Fe(OH)_3(s) \leftrightarrow Fe^{3+} + 3OH^{-}$	-40.35 ± 0.5	2008RAI/MOO
$Fe^{3+} + \leftrightarrow FeOH^{2+}$	11.81 ± 0.5	2008RAI/MOO
$Fe^{3+} + 2OH^{-} \leftrightarrow Fe(OH)_{2}^{+}$	23.4 ± 1.0	2001SMI/MAR
ISA⁻ + H⁺ ↔ HISA(aq)	4.0 ± 0.5	2005HUM/AND
$Fe^{3+} + ISA^{-} + 2H_2O \leftrightarrow Fe(OH)_2ISA(aq) + 2H^+$	1.55 ± 0.38	2012RAI/YUI
$Fe^{3+} + 2ISA^{-} + 3H_2O \leftrightarrow Fe(OH)_3(ISA)_2^{2-} + 3H^+$	-3.27 ± 0.32	2012RAI/YUI
$Fe^{3+} + ISA^{-} = FeISA^{2+}$	6.20	2004RAO/GAR
$Fe^{3+} + 2ISA^{-} = Fe(ISA)_{2}^{+}$	10.41	2004RAO/GAR
$Fe^{3+} + 3ISA^{-} = Fe(ISA)_{3}^{0}$	13.10	2004RAO/GAR
$Fe^{3+} + 4ISA^{-} = Fe(ISA)_4^{-}$	15.09	2004RAO/GAR
$ThO_2(am) + 3H^+ + ISA^- = ThOH(ISA)^- + H_2O$	12.5 ± 0.47	2009RAI/YUI
$ThO_{2}(am) + H^{+} + 2ISA^{-} + H_{2}O = Th(OH)_{3}(ISA)_{2}^{-}$	4.41 ± 0.47	2009RAI/YUI

ThO₂(am) solubility in 0.01 m NaCl and the presence and the absence of 0.01 m ISA [2009RAI/YUI]

NpO₂ solubility in 0.0016 M ISA as a function of pH and at pH 12 and function of ISA [2003RAI/HES]

No changes in Np(IV) concentrations in the presence of Fe(OH)₃(s) and normal Ca levels

Summary

- Outlined general methodology for evaluating complexants for their effect on solubility or use in decontamination
- Using EDTA and ISA as examples I showed:
 - The need for development of reliable data consistent with all of the available data in simple and complex systems
 - The role of both the complexation constants and bare ion activities in PA calculations and selecting decontaminating agents
- The effect of competing metal ions must be considered, which is generally ignored in these kinds of evaluations

Major references used in presentation

- Rai, Dhanpat, M. Yui, D. A. Moore. 2012. Isosaccharinate Complexes of Fe(III). Journal of Solution Chemistry 41: 1906-1921
- Rai, Dhanpat, Mikazu Yui, D. A. Moore, L. Rao 2009. Thermodynamic Model for ThO₂(am) Solubility in Isosaccharinate Solutions. *Journal of Solution Chemistry* 38: 1573 - 1587
- Rai, Dhanpat, D. A. Moore, K. M. Rosso, A. R. Felmy, H. Bolton, Jr. 2008. Environmental Mobility of Pu(IV) in the Presence of Ethtylenediaminetetraacetic acid: Myth or Reality. *Journal of Solution Chemistry* 37: 957 – 986.
- Rao, L., A. Yu. Garnov, Dhanpat Rai, Y. Xia, R. C. Moore. 2004. Protonation and Complexation of Isosaccharinic Acid With U(VI) and Fe(III) in Acidic Solution: Potentiometric and Calorimetric Studies. *Radiochimica Acta* 92: 575-581
- Rai, Dhanpat, N. J. Hess, Y. Xia, L. Rao, H. M. Cho, R. C. Moore, Luc R. Van Loon 2003. Comprehensive Thermodynamic Model Applicable to Highly Acidic to Basic Conditions for Isosaccharinate Reactions with Ca(II) and Np(IV). *Journal of Solution Chemistry* 32: 665-689.
- Cho, H. M., Dhanpat Rai, N. J. Hess, Y. Xia, and L. Rao. 2003. Acidity and Structure of Isosaccharinate in Aqueous Solution: A Nuclear Magnetic Resonance Study. *Journal of Solution Chemistry* 32: 691-702.
- Rai, Dhanpat, H. Bolton, D. A. Moore, N. J. Hess, G. R. Choppin. 2001. Thermodynamic Model for the Solubility of PuO₂(am) in the Aqueous Na⁺-H⁺-OH⁻-Cl⁻-H₂O-Ethylenediaminetetraacetate System *Radiochimica Acta* 89: 67-74

Pitzer ion-interaction parameters (Rai et al. 2008)

Species	β ⁽⁰⁾	β ⁽¹⁾	C¢
Na ⁺ -Pu(OH)EDTA ⁻	-0.2345	0.29	0.059
Na ⁺ -Pu(OH) ₂ EDTA ²⁻	-0.1262	1.74	0.054
Na ⁺ -Pu(OH) ₃ EDTA ³⁻	0.59	5.39	0.00
Na⁺-FeEDTA ⁻	-0.2345	0.29	0.059
Na ⁺ -Fe(OH)EDTA ²⁻	-0.1262	1.74	0.054

SIT Ion-interaction parameters determined by [2012RAI/YUI]

Species	ε(kg∙mol⁻¹)
Na ⁺ , Fe(OH) ₃ (ISA) ₂ ²⁻	-0.125
Na ⁺ , Th(OH) ₃ (ISA) ₂ ⁻	-0.07
Na ⁺ , Th(OH) ₄ (ISA) ₂ ²⁻	-0.125
FeISA ²⁺ , CIO ₄ -	0.4
$Fe(ISA)_{2^{+}}, CIO_{4^{-}}$	0.27
$Fe(ISA)_3^0$, CIO_4^-	0.00
$Fe(ISA)_4^-$, CIO_4^-	-0.07

Thermodynamic interpretations of PuO₂(am) solubility data (Rai et al. 2008)

