Domestic Nuclear Detection Office (DNDO)

Advancing Technological Capabilities to Prevent Nuclear Terrorism

 ΣP_{ν}^{*} $\mathcal{C}_n(\varepsilon, M)$ Threat Granite Medical Fuel Tanker

Joel Rynes, Ph.D., PMP Assistant Director Transformational and Applied Research Domestic Nuclear Detection Office

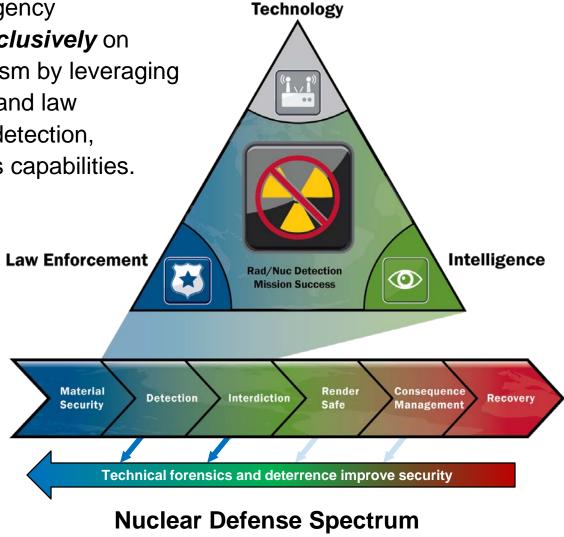
Nuclear Terrorism is a Persistent Threat

"No threat poses as grave a danger to our security and well-being as the potential use of nuclear weapons and materials by irresponsible states or terrorists." - President's National Security Strategy, February 2015

Materials:

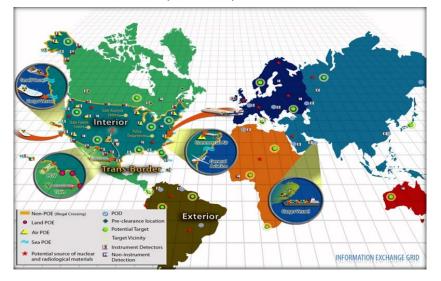
 Nuclear or other radioactive materials out of regulatory control

- Improvised Nuclear Device (IND)
- Radiological Dispersal Device (RDD) – "dirty bomb"
- Radiation Exposure Device (RED)



DNDO Mission

 DNDO is a unique interagency organization *focused exclusively* on preventing nuclear terrorism by leveraging technology, intelligence, and law enforcement to improve detection, interdiction, and forensics capabilities.



DNDO Functions

Nuclear Detection

 Develop the Global Nuclear Detection Architecture (GNDA) framework

- Acquire and support the domestic component of the GNDA
- Evaluate technology and operations
- Enhance capabilities over time through aggressive research and development

Homeland Security

Nuclear Forensics

National Technical Nuclear Forensics Center

- Lead interagency stewardship and coordination to ensure operational readiness
- Advance the capability for pre-detonation materials nuclear forensics
- Restoration and maintenance of science and expertise

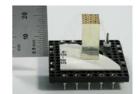
Operational Realities of the United States

- Land Border Pathway
 - 1.1 million individuals legally cross U.S. borders every day
 - 14,000 trucks cross into the U.S through our Southern Border daily
 - 7,400 miles of border with Canada and Mexico
 - 5,400 loaded rail cars cross into the United States every day
- Aviation Pathway
 - 640 million domestic and international aviation passengers and
 1.5 billion checked and carry-on bags are screened annually.
 - 200,000 general aviation aircraft and 19,500 landing facilities are in the U.S.
- Maritime Pathway
 - 32,000 seagoing containers arrive and are offloaded at U.S. seaports each day
 - 13 million registered U.S. recreational vessels, 282,000 fishing vessels, and 100,000 other commercial small vessels

Homeland Security *Approximate numbers

5

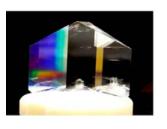
6

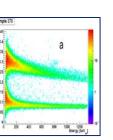

Grand R&D Challenges

- <u>Cost effective</u> equipment with sufficient performance to ensure wide spread deployment
- Detection of special nuclear material even when heavily shielded
- Enhanced wide area monitoring and search in a variety of scenarios, to include urban and highly cluttered environments
- Monitoring along challenging GNDA pathways, to include general aviation, small vessels, and in between ports of entry
- Linking <u>nuclear forensic</u> signatures of interdicted materials to a specific processing history and origin

Homeland

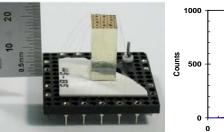
Security

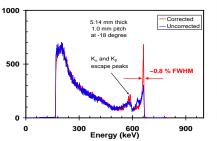

Cost Effective: Materials



Recent Successes

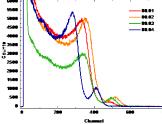
Cesium lithium yttrium chloride (CLYC) gamma and neutron detection

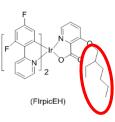

Fast neutron detection with large stilbene

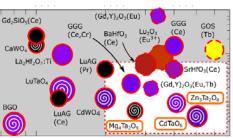

Neutron detectors for radiation portal monitors that do not use He-3

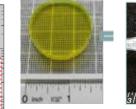
Homeland Security

Up and Coming Materials

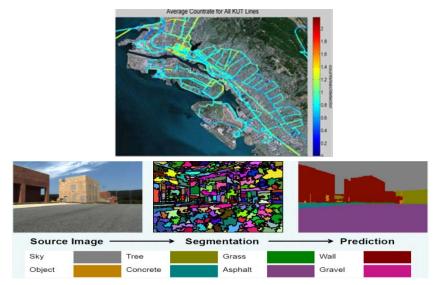


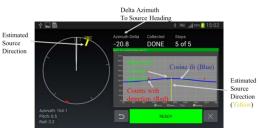



Thallium bromide (TIBr) semiconductor

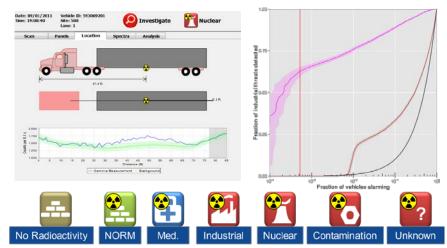


Spectroscopic plastics

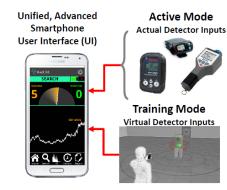

Scintillator discovery http://scintillator.lbl.gov


Scintillators: ceramic GYGAG and driving down the cost of Srl

Cost Effective: Algorithms

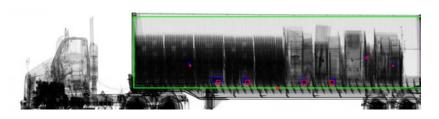


Background mapping and modeling



Embedded algorithms for identification, localization, and tracking

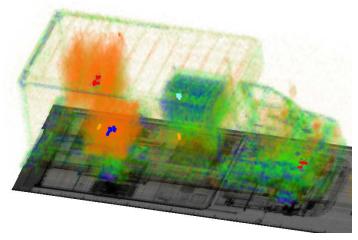
Machine learning algorithms for radiation portal monitors



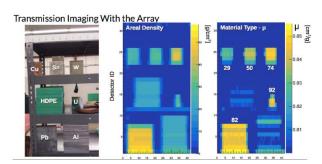
Smartphone and simulated training tools

Homeland Security Goal is to reduce nuisance alarms and improve detection while increasing usability.

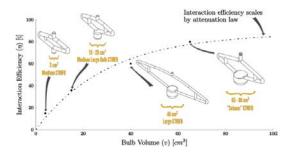
Shielded: Cargo Scanning


Single and dual energy radiography systems with automated detection algorithms Gamma (*photofission*) and neutron (*differential die away*) induced fission systems

Passive muon tomography integrated with radiation detection

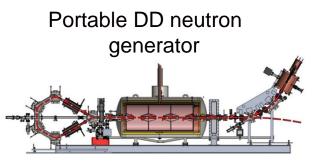


Homeland Security

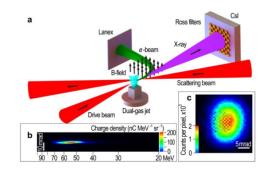


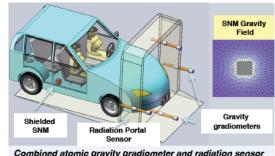
High energy backscatter provides three dimensional elemental map coupled with nuclear resonance fluorescence to give isotopic information

Shielded: Enabling Technology


Low dose reaction based gamma-ray source gives material discrimination

Tensioned metastable fluid neutron detector is insensitive to gamma-rays




Superconducting near continuous wave x-ray source

Compact betatron x-ray source for mobile applications

Laser driven sources to produce near-mono energetic and tunable photon beams

Combined atomic gravity gradiometer and radiation sensor passive vehicle scanning improves detection of shielded SNM

Gravity imaging utilizing coldatom gravity sensors

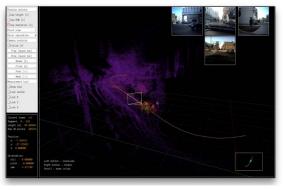
Wide Area: Monitoring

Radiation Awareness and Interdiction Network (RAIN)

Vehicle scanning at highway speeds to provide actionable information to law enforcement

SIGMA

DNDO teaming with the Defense Advanced Research Project Agency (DARPA)


Massive deployment of inexpensive but effective networked detectors to provide continuous monitoring

Wide Area: Search

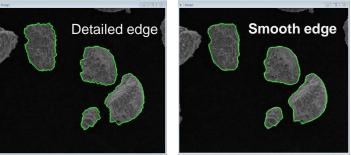


Modular, reconfigurable, and man-portable detection and localization. Mobile Urban Radiation Search (MURS)

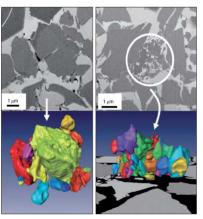
Airborne Radiological Enhanced -sensor System (ARES)

Hexagonal array of Nal detectors with LIDAR and Google cameras.

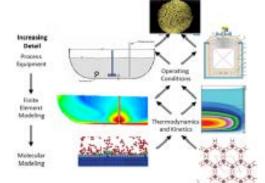
Gamma-ray detectors with multispectral imaging, GPS, and altimetry.


Homeland Security Fusion of radiation detection with other contextual information to enhance awareness and usability.

Nuclear Forensics



Temporal gamma-ray spectroscopy after neutron induced fission

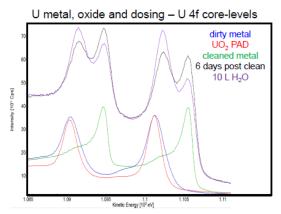


Quantitative image analysis for microstructural and morphological properties

Focused ion beam for 3D morphology

Dynamic simulation of plutonium processing

Homeland Security


Signature Discovery

Plutonium metal coupon (1 g)

Traditional views of Pu corrosion:

Chemical forensics science of plutonium and uranium oxides with age and environment

Using x-ray photoemission and laser ablation to determine Pu and U per depth

Homeland Security

