ポータブル核物質NDA測定装置の開発計画

Development of Portable Non-Destructive Assay System for SNMs

H. Ohgaki, Kyoto University

Checking of Detected Objects

Safety checking

After detection of objects with strong suspicions of containing NMs at airports / harbors / Stations / Big Events, and at the time of taking out of NMs from containers

To check whether or not the objects contain explosives or toxic materials before opening.

Checking of NM

(At the same time as safety checking in non-destructive manner)

It is desirable to check the followings.

-fissile contents

-U/Pu isotopic compositions

R & D in NDA for SNMs

Several active interrogation systems for deployment in seaports and airports have been proposed.

Our team's activity (R&D FY2012 – 2016) Supported by JST / MEXT

Successful reduced-scale demo Detect 1kg HEU hidden in 20ft container Inspection time: 3 min (400 containers per day) False alarm rate: <10 %

3 pulsed DD-IECs of 1e8 n/sec

Developed measurement method for active interrogation system

Method	Principle	Neutron Source
NRTA Neutron Resonance Transmission Analysis	Measure the Energy distribution of transmitted neutrons	Pulse Neutron Source + TOF (large facility)
DGA Delayed Gamma-ray analysis	Measure the delayed Gamma-rays from nuclear fission.	Pulse Neutron Source
DDA Differential Die-Away analysis	Measure the Secondary Neutrons from Nuclear Fission	(DT) Pulse Neutron Source
TENA Threshold Energy Neutron Analysis	Measure the Neutrons which has higher energy than the DD neutrons	DD Neutron Source (compact => portable!)

good SN ratio
 Tritium free
 CW machine : compact

Threshold Energy Neutron Analysis (TENA)

A significant portion of fission neutrons is above DD neutron energy.

Detect secondary neutrons above the threshold energy. Scattering makes the probing neutron energy lower. Unless SNMs present, no neutrons above the threshold.

- ✓ Use of DD is the key. Neither DT nor RI neutron source is applicable.
- \checkmark No need of pulsing the neutron generator.

R&D of Explosive Detection (Anti-personnel Landmine, 2002-2007)

Landmine detector prototype by use of a DD-IEC neutron source and directional γ-ray detectors

Compact DD-IEC neutron source and discharge photo inside

Schematic view of landmine detection via PGA of explosive (nitrogen)

BGO / NaI(TI) combined γ-ray detector for directionality through anticoincidence technique

Experiments by use of Landmine Simulants (Wax-diluted TNT & RDX)

TNT : 240g & 100g

Soil moisture : 2, 10, 18.5 wt%

Buried depth: 5, 10, 15 cm

Measurement time: 10 min

Soil moisture 2 %

Soil moisture 10 %

Soil moisture 18.5 %

Measured γ-ray Spectrum Example (100g RDX, BGO/Nal(TI))

Development of Basic Technologies for Detection / Property Checking of NMs in Japan

Location	Detection Systems	Property Checking Systems
1. Airports/Harbors	 Setting type (Large size) Reliable (perfect) detection of NMs 	 Setting type (Large size) Reliable (perfect) checking of NMs
Illicit NMs in cargo containers	(2015JFY-2019JFY) NRF-NDA Demonstration of NMs in Heavy Shielding	(2015JFY-2017JFY) Development of Active Neutron NDA Techniques with a D-T Neutron Source
2. Any Locations (Checkpoints)	 Portable type (Small size) Reliable detection of NMs 	 Portable type (Small size) Reliable checking of NMs
Illicit NMs in freights	Development of E Portable NM Detect System using a D (budget to	Basic Technology for ion/Property Checking D-D Neutron Source be requested)

Requirement of Immediate Industrialization

Target : Prototype 2018, Deploy until 2020

Conventional technology

Neutron generator:

DD Glow-discharge IEC

Neutron detector: Commercial Product

Tensioned Metastable Fluid Detector (TMFD)

What are crucially needed for successful "portable" system?

Identification method to distinguish fission neutrons from probing neutrons.

Threshold Energy Neutron Analysis (TENA)

Ref) K. Masuda et al., US-J IEC workshop (2012).

Ref) Y. Takahashi et al., Proc. Nuclear Physics and Gamma-ray Sources for Nuclear Security and Nonproliferation, 341 (2014).

Neutron generator: portable and intense, DD mandatory.

DD Glow-discharge IEC

Cf) Compact, transportable DD IEC developed ten years ago at KU for LM-detection.

Neutron detector: blind to probing DD neutrons and background gamma-rays, sensitive to neutrons above 2.45 MeV.

Tensioned Metastable Fluid Detector (TMFD)

Ref) R.P. Taleyarkhan et al., Nuclear Engineering and Design 238, 1820 (2008).

Portable DD-IEC

Tensioned Metastable Fluid Detector (TMFD)

Nano-Second Multiplicity Event Timing with CTMFD & Neutron Directionality

- > 100% blindness to X/gamma-rays.
- Blind to neutrons below a threshold energy.
- The threshold energy is variable.
- High detection efficiency above the threshold.
- Directionality (by A-TMFD).

Summary

- Our team has been developing the active interrogation system of SNMs.
- Starting R&D of the portable NDA for SNMs, especially targeting to Tokyo Olympic 2020 supported by the JPN government (NEDO / METI).

- Key technologies are: TENA analysis, TMFD neutron detector, and portable DD-IEC.
- Next step : Explosive detection and development of TMFD, Superior performance