International Symposium on Technology Development for Nuclear Nonproliferation and Nuclear Security

Session1: NDA Technology for Nuclear Safeguards

[Panel Discussion 1] Challenges of Technology Development for Future Safeguards

February 10, 2016

Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) Japan atomic Energy Agency (JAEA)

[Panel Discussion1]

Challenges of Technology Development for Future Safeguards 11:20~12:40 (80 minutes)

[60 minutes among the panelists, 20 minutes among all attendees]

Panelists				
Ms. Arden Dougan	Senior Program Manager DOE/NNSA			
Mr. Mark Fitzpatrick	Executive Director IISS-America Office			
Mr. Mitsuru Uesaka	Professor University of Tokyo			
Mr. Peter Schillebeeckx	Scientific Officer EC/JRC-IRMM			
Mr. Hirofumi Tomikawa	General Manager JAEA-ISCN			
Mr. Michio Seya (Moderator)	Senior Advisor JAEA-ISCN			

2

Panel Discussion 1

Arden Dougan

Mitsuru Uesaka

Mark Fitzpatrick

Challenges of Technology Development for Future Safeguards

Peter Schillebeeckx

Michio Seya (Chair)

Hirofumi Tomikawa

Panelist	Title, Affiliation, Research Area
Dr. Arden Dougan	Senior Program Manager Office of Proliferation Detection Defense Nuclear Nonproliferation Research and Development National Nuclear Security Administration U.S. Department of Energy Long term R&D for Safeguards, Warhead Verification and Monitoring and Radiological Source Replacement
Mr. Mark Fitzpatrick	International Institute for Strategic Studies (IISS) - Executive Director, IISS-Americas office - Head of IISS Non-Proliferation and Disarmament Programme
	Joined IISS in October 2005 after a 26-year career in the US Department of State, including as Deputy Assistant Secretary for Non-Proliferation (acting)
$\setminus 1155$	Research focus on countries and areas of proliferation concern, especially North Korea, Iran, South Asia.
	New book on 'Asia's Latent Nuclear Powers: Japan, South Korea and Taiwan'

Panelist	Title, Affiliation, Research Area
Professor Mitsuru Uesaka	Ph.D. Professor / Nuclear Professional School School of Engineering University of Tokyo -compact electron linac development for cancer therapy -nondestructive testing / nuclear security -laser photonic crystal accelerator for DNA damage -repair analysis in radiation biology -X-band linac-based compact short-pulsed neutron source
Dr. Peter Schillebeeckx	Scientific Officer European Commission/Joint Research Centre Geel site
European Commission	 -Responsible for neutron cross-section measurements at the time-of-flight facility GELINA -Evaluation of cross section data for nuclear energy applications including production of covariance data -Non-destructive analysis techniques -Neutron detection techniques

Panelist	Title, Affiliation, Research Area
Mr. Hirofumi Tomikawa	General Manager Technology Development Promotion Office Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) Japan Atomic Energy Agency (JAEA) -R&D Management for CTBT / Nuclear Forensics / Proliferation Resistance / Nuclear Safeguards / Nuclear Security
Mr. Michio Seya	Senior Advisor Technology Development Promotion Office Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) Japan Atomic Energy Agency (JAEA) -R&D Management on Advanced Technologies for Nuclear Detection and Measurement

Introduction to Panel Discussion "Challenges of Technology Development for Future Safeguards"

by Michio Seya

Safeguards in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT)

Peaceful Use of Nuclear Energy

CSA: Comprehensive Safeguards Agreement, AP: Additional Protocol

	19	60	19	80	20	00		20	20
IAEA, NPT etc. 19 (IA	57 EA	197) CSA	0 NPT A(INFCIRC1	153)	199 CSA	7 +AP(INFCI	RC540))	
Enrichment	G	aseous Di Cen	ffusion trifugal Se	 eparation		Las	er Se	para	ltion
Nuclear		LWR, HW	/R, Other	 S					
(Transmutation)									DS etc.
Disposal (SFA)				Ī					······
	P	UREX		PUREX Co	ommercia	l Repro.			
Reprocessing (MOX Fab.)						[F	'yro p	oroc	ess
Disposal (HAW)				[K

ADS: Accelerator Driven System, (*)PUREX-base TRU recovery + MOX Fab.

IAEA Safeguards (CSA + AP)

CSA: Comprehensive Safeguards Agreement, AP: Additional Protocol

IAEA Safeguards Inspection Activities

CSA Base Inspection Activities				
Purpose Verification Methods				
Bias defect checking (precise analysis)	By confirmation of isotopic compositions / quantities of NMs	DA (Destructive Assay)		
Partial defect checking (with accuracy of several %)	By confirmation of isotopic compositions / quantities of NMs	NDA (Non-Destructive Assay)		
Gross defect checking (with attribute test)	By confirmation of attributes			
Continuity of knowledge (Reduction of Re-verification)	By monitoring	C/S (Containment /Surveillance)		

AP Base Inspection Activities (Complementary Access (CA))				
Purpose	CA Activities	Methods		
Detection of undeclared NM (isotopic compositions/ quantities)	Collection of Environmental Samples	DA of Environmental Samples		
	Radiation Detection and Measurement	Portable NDA		
Activities, etc.	Checking of existence signals of NM (For supporting effective sampling at the access place)	Portable NDA		
Detection of Undeclared Facility	Visual Observation Measurement by Laser System, etc.	Analyzing Satellite Imagery, etc.		

Integrated Safeguards

[CSA(INFCIRC/153)+AP(INFCIRC/540)]

Application of State Level Approach

Necessity of Support from Member States to IAEA

IAEA: Implementing wide-range activities

CSA + AP Activities

Inspection to Declared Nuclear Material

Complementary Access

Others

IAEA's Requests for Support to Member States

- Support of R&D for Verification Technology

[STR - 375 IAEA Department of Safeguards Long-Term R&D Plan, 2012-2023 (January 2013)]

⇒For strengthening IAEA abilities, improving effectiveness, etc.

- Safeguards by Design for (Large-size) Automated Facilities (Reprocessing Plants (MOX Plants), Nuclear Facilities treating very high radiation NM, etc.)

⇒For reduction of PDI (Person Days of Inspection)

(STR-375) IAEA Department of Safeguards Long-Term R&D Plan, 2012-2023 (Extracted Parts)

4-5 items to be concentrated in this discussion among so many IAEA's R&D requests

3. Ability to safeguard new types of facility. (1/2)			
3.1 Develop generic safeguards approaches for:			
 Pyroprocessing plants 	Μ		
 Other new reprocessing technologies 	L		
 Laser enrichment plants 	Μ		
 Other new enrichment technologies 	L		
 Small modular and/or Gen IV reactors 	Μ		
3.2 Develop tools and techniques to characterize:			
 Fissile content in metal mixtures containing the actinides Np, Am and Cm during pyroprocessing 	Μ		
 Fuel types for Gen IV reactors containing minor actinides 	L		
 Seismic signals in geological repositories 	Μ		

3. Ability to safeguard new types of facility. (2/2)

3.3 Develop training to reflect the approaches and equipment for safeguarding new types of facility, including consulting with States developing such facilities to help assess what training is required.

3.4 Develop a mechanism to enable safeguards to be considered early in the facility design process. (Safeguards by Design)

5. Ability to deploy equipment at facilities to meet safeguards requirements. (1/2)

5.1 Develop improved tools and techniques to detect misuse of reprocessing plants (real time detection of Pu separation)

5.2 Develop tools and techniques to enable timely, potentially real time, detection of HEU production in LEU enrichment facilities.

5.3 Develop improved tools and techniques to enable real time flow measurements of nuclear material, including UF6 at enrichment facilities and Pu at reprocessing facilities.

5.4 Develop appropriate safeguards equipment to establish and maintain knowledge of spent fuel in shielding/storage/transport containers at all points in their life cycle.

5.5 Develop methods to verify fresh fuel in shipping containers without opening the containers.

Η

Μ

Μ

5. Ability to deploy equipment at facilities to meet safeguards requirements. (2/2)

5.6 Develop improved NDA instruments and techniques to address verification of waste and scrap nuclear material with M impure composition or heterogeneous isotopic composition.

5.7 Develop more sensitive and less intrusive alternatives to existing NDA instruments to perform partial defect test on spent fuel assembly prior to transfer to difficult to access storage.

5.8 Develop alternative NDA instruments, for instance based on liquid scintillators, to improve performance in neutron coincidence counting techniques applied to various types of fissile material.

6. Ability to acquire and deploy safeguards equipment that is sustainable, standardized and modular, with increased use of commercial off-the shelf products

6.1 Implement an improved cost/benefit assessment methodology for the design and operation of safeguards equipment

6.2 Develop neutron counting systems reducing the use of ³He or offering equivalent functional and technical alternatives

Μ

Safeguards by Design ("SBD") for (Large Size) Automated Nuclear Facilities

-Reprocessing Plants, MOX Plants -New Types of Nuclear Facilities (treating very high radiation NM) *Next Generation Aqueous-base Reprocessing Facilities *Pyro processing facilities *Transmutation fuel (ADS fuel) facilities

"SBD" Process for Effective SG Verification of NM in Process

In (large size) automated nuclear facilities treating NM with very high radiation, <u>people (operators/inspectors) can not go inside the process</u> <u>area</u>. For this kind of facility, it is necessary to integrate SG verification systems into facility operation systems.

"SBD" Process Well Demonstrated Safeguards Systems for Practical Use (to be developed in advance of design of nuclear facility)

Safeguards Systems ; Properly / effectively integrated into systems (such as transfer system) of nuclear facilities

-Reduction of PDI (Person-Days of Inspection) -Reduction of Operation Interference by Inspection

Items of Panel Discussion 1 "Challenges of Technology Development for Future Safeguards"

- i Support of R&D for NDA in Verification Technologies (1/2)
 - 1 Development of Neutron Counting Systems using Alternative Detectors to ³He
 - 2 Innovative R&Ds for Improvement of Present SG Equipment
 - 3 NDA Techniques / Systems for LWR Spent Fuel Assemblies
- ii Safeguards by Design "SBD" for (Large Size) Automated Nuclear Facilities
 - 4 Safeguards by Design "SBD" for Nuclear Facilities
- iii Support of R&D for NDA in Verification Technologies (2/2)
 5 Development of NDA Technologies for Pu, Am, Np, Cm in Mixtures

End of Introduction

Items of Panel Discussion 1
"Challenges of Technology Development
for Future Safeguards"

i	Support of F	R&D for ND	A in Verifica	ation Technolo	ogies (1/2)
---	--------------	------------	---------------	----------------	-------------

1	Development of Neutron Counting Systems using Alternative
I	Detectors to ³ He

- 2 Innovative R&Ds for Improvement of Present SG Equipment
- 3 NDA Techniques / Systems for LWR Spent Fuel Assemblies
- ii Safeguards by Design "SBD" for (Large Size) Automated Nuclear Facilities
 - 4 Safeguards by Design "SBD" for Nuclear Facilities
- iii Support of R&D for NDA in Verification Technologies (2/2)
 5 Development of NDA Technologies for Pu, Am, Np, Cm in Mixtures

NDA Technologies in Safeguards

Rough Explanation
Detection of self-emitted radiations from NM
Using outer sources of radiation to activate NM Detection of induced / transmitted radiations (changes of radiations)

Passive Type and Active Type NDA in SG Verification

Items of Panel Discussion 1 "Challenges of Technology Development for Future Safeguards"

- i Support of R&D for NDA in Verification Technologies (1/2)
 - 1 Development of Neutron Counting Systems using Alternative Detectors to ³He
 - 2 Innovative R&Ds for Improvement of Present SG Equipment
 - 3 NDA Techniques / Systems for LWR Spent Fuel Assemblies
- ii Safeguards by Design "SBD" for (Large Size) Automated Nuclear Facilities
 - 4 Safeguards by Design "SBD" for Nuclear Facilities
- iii Support of R&D for NDA in Verification Technologies (2/2)
 5 Development of NDA Technologies for Pu, Am, Np, Cm in Mixtures

Passive Type NDA in SG Verification (Neutron Coincidence Counter)

Rough Explanation of Principle

Using self-emitted neutrons:

-Spontaneous fission neutrons from²³⁸Pu, ²⁴⁰Pu, ²⁴²Pu etc.

-Count neutrons emitted from the same spontaneous fission

(\rightarrow quantification of ²⁴⁰Pu-eff. in the sample)

Neutron Detectors: ³He proportional counter

Usage in Nuclear Fuel Cycle

Partial Defect Verification of purified Pu from PUREX process etc. Nuclear facilities;

Conversion process of reprocessing plant / facility

MOX fabrication plant / facility

-Concern with shortage of ³He gas supply (2009~)

-IAEA requested member states for development of alternative detectors to ³He (March, 2011)

(Example) Neutron Coincidence Counters at Reprocessing Plants / MOX Plants

Pu Nitrate Solution / MOX Samples (Purified Pu, U: Containing no FP/MA)		
	Present SG Verification	
Pu Quantity (²⁴⁰ Pu-effective)	NDA (Passive type NDA) - HLNCC / INVS [High Level Neutron Coincidence Counter / Inventory Sample Counter] * Counting of Spontaneous Fission Neutrons from ²⁴⁰ Pu etc.	HLNCC 1 2 3 1: He-3 proportional Counter 2: Polyethylene 3: Sample Cavity
Pu Isotopic Compositions	NDA (Passive type NDA) - HRGS [High Resolution Gamma-ray Spectrometer] * Counting of Self-emission Gamma- rays from Pu isotopes	HRGS

Discussion between Panelists --1

Arden Dougan

Alternatives to ³He Detectors: Fast Neutron Detectors

- Advantages of detection of fast neutrons in coincidence counters
 - Less scattering-better penetration
 - Less effect of shielding
 - Lower signal/noise
 - Directionality
 - Imaging
 - Gamma rejection
 - Detect low Z material

LiF/ZnS Multiplicity Counter

- Rapid Pu inventory verification for MC&A
- Similar Figure of Merit to Epithermal Neutron Multiplicity Counter
- Anticipated Final Capabilities
 - Simulated counting efficiency: 52%
 - Simulated die-away time: 15 μsec
 - Sample acquisition time: 1000-3600 seconds
 - Pu mass assay precision goal: 1%
 - Weight: 1000 lbs
 - Footprint: $31'' \times 32'' \times 82''$
 - Power: < 1 kW</p>

NATIONAL LABORATORY

Verification of fuel assemblies

Conventional ³He based system

System based on a EJ309 scintillator

Characterization of a EJ309 scintillator at VdG

Characterization of other detectors : e.g. diamond

R&D NDA : detectors

• Replacement ³He

- Medium resolution γ-ray detectors
 - CdZnTl & LaBr: improved procedures for spectrum analysis

Hirofumi Tomikawa Evaluation Results of ASAS

ASAS: Alternative Sample Assay System (using ZnS/B_2O_3 ceramic scintillator detectors as alternative to He-3 tubes)

	ASAS		INVS	
Counting Efficiency (e)	15.97%		30.82%	
Die-away Time (t in µs)	77.67		45.36	
Number of Tubes	24 ZnS/B ₂ O ₃ Ceramic Scintillator Tubes		16 ³ He tubes	
Figure of Merit (FOM) <e<sup>2/t></e<sup>	328.4		2094.1	
Figure of Merit (FOM) <e 2="" t1=""></e>	1.81		4.58	
Total Measurement Uncertainty	Passive Cal.	Known-α	Passive Cal.	Known-α
(Using MOX samples)	3.91%	4.14%	3.66%	5.74%

ASAS

(Comparison with INVS) -Counting Efficiency is smaller -Die-away Time is longer -FOM is smaller

 \rightarrow ASAS can be used in actual safeguards inspection.

Items of Panel Discussion 1
"Challenges of Technology Development
for Future Safeguards"

- i Support of R&D for NDA in Verification Technologies (1/2)
 - 1 Development of Neutron Counting Systems using Alternative Detectors to ³He
 - 2 Innovative R&Ds for Improvement of Present SG Equipment
 - 3 NDA Techniques / Systems for LWR Spent Fuel Assemblies
- ii Safeguards by Design "SBD" for (Large Size) Automated Nuclear Facilities
 - 4 | Safeguards by Design "SBD" for Nuclear Facilities
- iii Support of R&D for NDA in Verification Technologies (2/2)
 5 Development of NDA Technologies for Pu, Am, Np, Cm in Mixtures

Discussion between Panelists --2

February 10, 2016

International Symposium on Technology Development for Nuclear Nonproliferation and Nuclear Security

Mobile and Intense Neutron Source

Mitsuru Uesaka Nuclear Professional School, School of Engineering, University of Tokyo

Importance of Combination of X-ray- and Neutron Sources

Mobile 3.95MeV X-band linac X-ray source of University of Tokyo

	Main unit	Accelerating tube	RF Source	HVPS Control
Cooling unit	Weight (kg)	80+62 (Collimator + Accelerating tube)	62	116
RF Source Power source X-ray Head		Electron gun output current 300mA	Frequency 9.3GHz	
	Parameters	Electron gun voltage 20kV Beam current 100mA Beapetition rate 200pps		
			Repetition rate 200pps	
			RF power output 1.5 MW	

First Legal On-site Inspection of 3.95 MeV X-band Linac X-ray Source at Public Works Research Institute in Japan on January 29, 2015

X-ray Flat Camera(1s)

Imaging Plate (30s)

43

Mitsuru Uesaka Safety Control for Bridge Inspection

- Amendment of The Law Concerning Prevention of Radiation Hazards Due to Radioisotopes that allows use of below 4 MeV accelerator for only on-site bridge inspection was done in Japan in 2005.
- We registered 3.95 MeV electron linac X-ray source as a radiation source to Nuclear Regulation Authority (NRA) in 2014.
- Then, we design and set a radiation controlled area over 1.3 mSv/3 months and a facility boundary of 250 µSv/3 months under Regulations on Prevention of Ionizing Radiation Hazards and submit the application of on-site use to Nuclear Regulation Authority (NRA).
- Finally, we can perform the on-site bridge inspection.

Intensity and Application of Compact Accelerator Neutron Sources

On-site Neutron Inspection

by X-band 3.95 MeV Electron Linac Neutron Source

Security Inspection

Nuclear Material Evaluation in Melted Fuel Debris in Fukushima TEPCO Daiichi NPP site

Safety Control for Neutron Use

- Below-4 MeV accelerators can be used for only on-site bridge inspection in a radiation controlled area over 1.3 mSv/3 months and a facility boundary over 250 µSv/3 months under Regulations on Prevention of Ionizing Radiation Hazards in Japan.
- Neutrons should be also monitored, added to the above doses and controlled.
- We are continuously consider the deregulation of other on-site uses except the bridge inspection.

Arden Dougan

Innovation for Current Safeguards: Software

- Improved correlated neutron counting
 - More accurate and complete information from neutron data
 - Based on fundamental physics
 - Improve multiplicity analysis by utilizing high order moments (quads and pents)
 - Dead time correction
 - Validation

Arden Dougan () NERNATO Improvements to Current Safeguards: () NERNATO Counting Standards

- ²³³U
 - Sets of small counting standards of ²³³U will be fabricated and distributed across the DOE complex to help maintain the infrastructure, experience, and expertise in evaluating ²³³U signatures.
- ²⁴⁴Pu
 - ²⁴⁴Pu that originated from Mark-18 targets that were previously stored at ORNL, was shipped to Russia in 2005 for enrichment in VNIIEF's calutrons
 - The enriched product material (99.985 %) was returned to the United States in May 2015.
 - This material will be fabricated into CRMs by 2018.
 - 60% of the CRMs produced will be provided to the IAEA and 40% will be retained in the United States.

NONPROLIFERATION AND ARMS CONTROL (NPAC)

Sealed, (2.5 cm diameter × 1jcm height), low-activity (~10 µCi), high-purity (>99.9%) ²³³U gamma-ray sources

Arden Dougan

Internet of Things (IOT): The Next Technological Revolution

- IOT is a network of sensors connected to server/cloud for reporting events for processing and sharing
 - Reliable connectivity
 - Sensing a complex environment
 - Low cost
 - Low power
 - Security
 - Persistent and active self-monitoring
 - Integration across devices

Arden Dougan

DOE's Vision for IOT in Safeguards Has

Existed for Many Years

Hirofumi Tomikawa Advanced Pu direct monitoring technical development

Development of a new technology for continuous measurement and monitoring Pu with FP Expected Effects and Results

- This technology can be applied to real time monitoring for entire reprocessing process.
- Continuous monitoring technology can be extended to detect security events.

Items of Panel Discussion 1
"Challenges of Technology Development
for Future Safeguards"

i	Support of	R&D for	NDA in	Verification	Technologies	(1/2)
---	------------	---------	--------	--------------	---------------------	-------

- 1 Development of Neutron Counting Systems using Alternative Detectors to ³He
- 2 Innovative R&Ds for Improvement of Present SG Equipment
- 3 NDA Techniques / Systems for LWR Spent Fuel Assemblies
- ii Safeguards by Design "SBD" for (Large Size) Automated Nuclear Facilities
 - 4 Safeguards by Design "SBD" for Nuclear Facilities
- iii Support of R&D for NDA in Verification Technologies (2/2)
 5 Development of NDA Technologies for Pu, Am, Np, Cm in Mixtures

Background Needs

Increment of quantities of LWR spent fuel assemblies

- Increment of number of LWRs in the world [Re-startup of LWRs in Japan]
- Intermediate Storage of Spent Fuel Assemblies of LWRs
- Geological Disposal of Spent Fuel Assemblies of LWRs

(SFA: spent fuel assembly/assemblies)

Challenges: Quantitative NDA Technologies of NM (Pu etc.) in SFA

Modified Slide from LANL Present NDA Devices for LWR-SFA

- Cerenkov Viewing Device (ICVD, DCVD)
 -Detects Cerenkov glow from water around assembly
- FORK and SMOPY
 - -Fission chambers \rightarrow total neutron (driven by ²⁴⁴Cm) -lon chambers and CdTe \rightarrow FP gamma-rays
- Spent Fuel Attribute Tester (SFAT)
 - ¹³⁷Cs is present

→ Present NDA devices for SFA check only attributes of SFA.

Present Situation of NDA for Quantification

NDA Systems for Quantification of NM			
Fresh MOX Fuel	 -Various passive type NDA systems with neutron coincidence counting using ³He detectors have been used. -NDA accuracies of ²⁴⁰Pu-effective are less than several %. 		
Spent Fuel Assemblies (SFA)	 No NDA systems for quantification of NM in SFA have been developed. → NGSI (USDOE) program 		

Minor Actinides co-existing with Pu in SFA

Half-life, Neutron Yields, Decay Heat of U/Pu/Minor Actinides(Np/Am/Cm) Isotopes

Nuclides (Isotopes)	Half-life (y)	Neutron Yield (n/s-g)	Decay Heat (W/kg)	Remarks
²³⁵ U	7.0 ×10 ⁸	2.99 × 10 ⁻⁴	6×10 ⁻⁵	Fissile
²³⁸ U	4.5 ×10 ⁹	1.36 × 10 ⁻²	8×10 ⁻⁶	
²³⁷ Np	2.1 ×10 ⁶	1.14 × 10 ⁻⁴	2.1×10 ⁻²	
²³⁸ Pu	8.8 ×10 ¹	2.59 × 10 ³	5.7×10^{2}	Spontaneous Fission
²³⁹ Pu	2.4 ×10 ⁴	2.18 × 10 ⁻²	2.0	Fissile
²⁴⁰ Pu	6.54 × 10 ³	1.02 × 10 ³	7.0	Spontaneous Fission
²⁴¹ Pu	1.47 × 10 ¹	4.93 × 10 ⁻²	6.4	Fissile
²⁴² Pu	3.76 × 10 ⁵	1.72 × 10 ³	1.2×10 ⁻¹	Spontaneous Fission
²⁴¹ Am	4.33×10^{2}	1.18	1.15×10^2	
²⁴⁴ Cm	1.81 × 10 ¹	1.08 × 10 ⁷	2.8×10 ⁻³	Spontaneous Fission

Difficulties of NDA for Quantification of NM in SFA

Fresh MOX Fuel Assembly	Spent Fuel Assembly (SFA)	
U, Pu MA(Am)	U, Pu, MA(Np, Am, Cm),FP	
Not so high radiation	Very high radiation	
	Gamma-ray : Mainly from FPs Neutron : Mainly from Cm-244	

Factors leading to difficulty of NDA of Pu in SFA

-Existence of MA (Cm-244) :

Very high neutron yield of Cm-244 makes it difficult to apply neutron coincident counting

-Existence of very strong gamma-rays :

Very high strong gamma-rays makes self-emission gamma-rays from Pu isotopes be buried in the BG

Discussion between Panelists --3

Arden Dougan New Technologies for Spent Fuel NDA

Passive:

Time correlated neutrons [Differential Die-away Self-Interrogation (DDSI)]

Comparison of high and low multiplying sections [Passive Neutron Albedo Reactivity (PNAR)]

Guide tube neutron and gamma detection [Partial Defect Verification of Spent Fuel (PDET)]

High count test platforms [HPGe and LaBr₃ for gammas; B-10 for neutrons]

Active:

Time-varying neutron interrogation [Differential Die-away (DDA)] – not shown

Continuous neutron interrogation [Californium Interrogation with Prompt Neutron (CIPN)]

Active neutron coincidence counting [Advanced Experimental

Fuel Counter (AEFC)]

Peter Schillebeeckx

Self-Indication Neutron Resonance Densitometry

- First proposed at LANL
- R&D : collaboration SCK•CEN and JRC Geel SINRD for spent fuel assemblies in dry storage area
 - Experimental validation of the concept
 - Development of detectors

Peter Schillebeeckx

R&D NDA : detectors

- Small neutron detectors for spent fuel measurements with specific sensitivity to e.g. ²³⁵U & ²³⁹Pu
 - For SINRD

Items of Panel Discussion 1 "Challenges of Technology Development for Future Safeguards"

- i Support of R&D for NDA in Verification Technologies (1/2)
 - 1 Development of Neutron Counting Systems using Alternative Detectors to ³He
 - 2 Innovative R&Ds for Improvement of Present SG Equipment
 - 3 NDA Techniques / Systems for LWR Spent Fuel Assemblies
- ii Safeguards by Design "SBD" for (Large Size) Automated Nuclear Facilities
 - 4 Safeguards by Design "SBD" for Nuclear Facilities
- iii Support of R&D for NDA in Verification Technologies (2/2)
 5 Development of NDA Technologies for Pu, Am, Np, Cm in Mixtures

Necessity of SBD for Effective SG Verification of NM in Process

In (large size) automated nuclear facilities treating NM with very high radiation, <u>people (operators/inspectors) can not go inside the process</u> <u>area</u>. For this kind of facility, it is necessary to integrate SG verification systems into facility operation systems.

 -Reprocessing Plants, MOX Plants
 -New Types of Nuclear Facilities (treating NM with very high radiation)
 *Next Generation Aqueous-base Reprocessing Facilities
 *Pyro processing facilities
 *Transmutation fuel (ADS fuel) facilities

Discussion between Panelists --4

(AEA) Essence of SBD (1/2) Michio Seya Integration of SG NDA Systems into Facility Operation Systems

(AEA) Essence of SBD (2/2) Michio Seya Integration of SG NDA Systems into Facility Operation Systems

SBD (integration of SG (NDA) system into facility operation system) gives advantages to both of inspection and operation sides with

-Inspection Side: Reduction of Person Days of Inspection -Operation Side: Reduction of interference by Inspection.

For integration of SG (NDA) systems into facility operation systems

-NDA technology (NCC in this case) has to be well developed before the design of the nuclear facilities.

 \rightarrow Facility operators (or member states etc.) need to start early development of adequate SG systems well before the design the new types of facility

IAEA SBD guidance documents

- IAEA has developed SBD guidance for designers and operators via member state support program.
- The guidance documents are published.
 - Basic guidance for management:
 - ✓ International Safeguards in Nuclear Facility Design and Construction (Published in 2013)

• Facility-specific guidance for designers:

- ✓ Nuclear Reactors (Published in 2014)
- ✓ Conversion Plants
- ✓ Fuel Fabrication Plants
- ✓ Spent Fuel Management
- ✓ Enrichment Plants
- ✓ Reprocessing Plants

JAEA also support to develop the guidance via Japan support program.

Safeguards by Design' is more difficult to employ in cases where new nuclear facilities were not reported to the IAEA at the initial stage.

- Iran and India examples for different reasons.
- North Koreas' facilities might be another future case.

Managing the cost of safeguards is a policy consideration.

- If India puts more facilities under safeguards, who will pay?
- If Rokkasho begins full-scale operations, safeguards costs will increase.

Items of Panel Discussion 1 "Challenges of Technology Development for Future Safeguards"

- i Support of R&D for NDA in Verification Technologies (1/2)
 - 1 Development of Neutron Counting Systems using Alternative Detectors to ³He
 - 2 Innovative R&Ds for Improvement of Present SG Equipment
 - 3 NDA Techniques / Systems for LWR Spent Fuel Assemblies
- ii Safeguards by Design "SBD" for (Large Size) Automated Nuclear Facilities
 - 4 Safeguards by Design "SBD" for Nuclear Facilities

iii Support of R&D for NDA in Verification Technologies (2/2)

5 Development of NDA Technologies for Pu, Am, Np, Cm in Mixtures

Transmutation of MA and Long-life FP

The MYRRHA ADS project (by Paul Schuurmans)
Transmutation of MA and Long-life FP

Difficulties of NDA for Quantification of MA in Mixtures of Pu and MAs

Fresh MOX	Spent Fuel	ADS (Spent) Fuel
Fuel Assembly	Assembly (SFA)	Mixtures of Pu, MAs
U, Pu MA(Am)	U, Pu, MA(Np, Am, Cm), FP	Pu, MA(Np, Am, Cm), FP
Not so high	Very high	Very high
radiation	radiation	radiation
	Gamma-ray : Mainly from FPs Neutron : Mainly from Cm-244	Gamma-ray : Mainly from FPs Neutron : Mainly from Cm-244

→Necessity of Active Type NDA Technologies

Discussion between Panelists --5

Neutron Resonance Analysis (NRCA&NRTA)

- Cross section is a measure for the interaction probability
- Resonances appear at energies, which are specific for each nuclide
- Position and amplitude of resonances can be used as fingerprints to
 - identify and quantify nuclides
 - elemental & isotopic composition
- NRTA & NRCA, developed at JRC-IRMM
 - Non-Destructive Analysis (NDA)
 - sensitive to almost all nuclides (except light)
 - no sample preparation required
 - requirements:
 - TOF-measurements at a white neutron source

NRTA at GELINA : Nuclear Material

U₃O₈ reference sample EC NRM 171

Strong impact of matrix material

NRTA at GELINA: Nuclear Material

NRTA at GELINA : Nuclear Material

U-isotope	Areal number density (at/b)		Ratio
	Declaration	NRTA	
²³⁵ U	$(5.0326 \pm 0.0080) \times 10^{-4}$	$(5.063 \pm 0.09) \times 10^{-4}$	1.006
²³⁸ U	(1.0628 \pm 0.0015) x 10 $^{\text{-2}}$	(1.062 \pm 0.01) x 10 $^{\text{-2}}$	0.999

- \Rightarrow bias < 1.0 %
- Accurate & absolute NDA technique
- No calibration requirements using representative reference materials
- \Rightarrow Analytical technique
- \Rightarrow Applications:
 - Melted fuel (Fukushima)
 - Sampling at reprocessing facilities

R&D NDA : nuclear data

- NRA
 - Improved resonance parameters for MA (Am, Cm, ...)
 & FP
- Gamma-ray spectroscopy
 - Absolute isotopic measurements : decay data
- Modelling of neutron based systems
 - Prompt neutron multiplicity distributions

Differential Die-away Assay (DDA) Instrument

- Fast quantification of plutonium in spent fuel with less than 2% uncertainty
- Transportable and independent of facility design
- High sensitivity to small changes in the amount of fissile material in the fuel assembly
 - Removal/replacement of 10 pins can be detected

Delayed Gamma Spectroscopy

- Experiments at Idaho Accelerator Center show clear difference between ²³⁵U and ²³⁹Pu
- Good agreement between models and measurements

Active (D-T Source) Neutron NDA System (1/2)

(for nuclear safeguards/ nuclear security)

Active NDA Techniques	What Quantified / Identified
DDA: Differential Die-away Analysis	²³⁹ Pu-effective
DGS: Delayed Gamma-ray Spectroscopy	Ratio of ²³⁵ U/ ²³⁹ Pu/ ²⁴¹ Pu
NRTA: Neutron Resonance Transmission Analysis	Quantity of each of U/Pu isotopes
PGA/ NRCA Prompt Gamma-ray Analysis Neutron Resonance Transmission Analysis	Existence of explosives / toxic materials

Mark Fitzpatrick, International Institute for Strategic Studies

The viability of the Iran nuclear accord (JCPOA) will depend on effective IAEA safeguards.

Some critics contend that large bulk handling facilities are inherently incapable of being adequately safeguarded because of the problem of material unaccounted for (MUF) and other issues.

They argue that the IAEA will not be able to adequately safeguard the Natanz Enrichment facility in the future.

- Natanz is planned for 190,000 SWU. This will be allowed after the JCPOA limits come off in 15 years.
- Iran should be persuaded to rely instead on the international marketplace.
- But the IAEA will need to anticipate that Iran will employ IR-8 model centrifuges in large numbers.

Mark Fitzpatrick, International Institute for Strategic Studies

The criticism fails to take into account the IAEA's multi-layered safeguards tools and new technologies.

 At Natanz and Fordow, modern technologies include electronic seals and the on-line enrichment Monitor (OLEM) to provide continuous measurements directly to the IAEA.

OLEM took many years to develop.

 Given the time it takes, development of new technologies must start early on and be given sustained attention.

Iran's restrictions on IAEA access to military sites puts more responsibility on the role of safeguards technology.

Plenary Discussion

Thank you for joining us.