Joint Research Centre

the European Commission's in-house science service

×.

×

3

www.ec.europa.eu/jrc

1

Æ

Serving society Stimulating innovation Supporting legislation

JAEA/JRC collaboration Development of active neutron NDA

Peter Schillebeeckx

International Symposium on Technology Development for Nuclear Non-proliferation and Nuclear Security 10 February 2016, Tokyo, Japan

EC - JRC - IRMM

• Action Sheet – 1 (2012 – 2015)

Neutron Resonance Densitometry (NRD) for characterization of debris of melted fuel

• Action Sheet – 7 (2015 – 2018)

Development of active neutron NDA techniques for Nuclear Non-Proliferation, Security and Safety

AS – 1: Method to characterize melted fuel from a nuclear accident

Earthquake followed by a Tsunami (15 m)

core meltdown (units 1,2,3)

Melted fuel:

Complex mixture of materials in fuel and control/safety rods,

i.e. U, Pu, fission products, structural materials and neutron absorbers (¹⁰B)

Removal of melted fuel: substantial amount of debris

Commission

Removal of melted fuel: substantial amount of debris

Commission

Neutron Resonance Analysis (NRCA&NRTA)

Total cross section / b

- Cross section is a measure for the interaction probability (symbol σ)
 - Resonances appear at energies that are specific for each nuclide

Neutron Resonance Analysis (NRCA&NRTA)

Total cross section / b

5

- Cross section is a measure for the interaction probability (symbol σ)
- Resonances appear at energies that are specific for each nuclide
- Position and amplitude of resonances can be used as fingerprints to
 - identify and quantify nuclides
 - elemental & isotopic composition
- Neutron Resonance Analysis (developed at JRC)
 - Non-Destructive Analysis (NDA)
 - sensitive to almost all nuclides (except light)
 - no sample preparation required
 - requirements:

TOF-measurements at a white neutron source

Time – of – flight facility GELINA at JRC - IRMM

Neutron resonance transmission analysis (NRTA)

ommiss

Neutron resonance transmission analysis (NRTA)

ommiss

Target value: uncertainty on Pu and U content \leq 2%

Challenges due to the material characteristics:

- Inhomogeneity of the samples: due to diversity in shape and size of the particle & rock-like debris samples
- Impact of impurities: structural material and neutron absorbers, i.e. ¹⁰B (control rods and borated water)
- Complex transmission spectra due to fission products

Solutions have been studied and validated by experiments at GELINA as part of a JRC/JAEA collaboration

Joint EURATOM / JAEA workshop 4 – 5 March 2015 JRC-IRMM, Geel, Belgium

Report on progress made

- Presentations on progress made
- Demonstration of NRD performance

50 participants

- Extensive delegation from Japan (JAEA, Univ. Kyoto & Nagoya)
- DG-ENER, JRC
- EU Member states
- IAEA, US (DOE, LANL, LLNL, ORNL)

Transmission is a non-linear function of n

- Homogeneous sample : $T = e^{-n^{t}}$ tot

n is the quantity of interest

Transmission is a non-linear function of n

- Homogeneous sample : $T = e^{-n \sigma_{tot}}$

- Heterogeneous sample : $< T > = < e^{-n \sigma_{tot}} > \neq e^{-(<n)\sigma_{tot}}$

<n> is the quantity of interest

- $\Rightarrow Dedicated model for debris samples is required to avoid bias effects$ $\Rightarrow LP-Model (Levermore, Pomraning et al., J. Math. Phys. 27, 2526, (1986))$
 - Widely used for other problems dealing with radiation transport through stochastic media, e.g. scattering of sunlight in clouds
 - Validated by experiments at GELINA (Becker et al., EPJ Plus 129 (2014) 58 9)

Samples

18 different samples8 different elements

Black box: 8 slots

- B, Mn, Co, Cu, Nb, Rh, W, Au samples with different thicknesses
- Selection of samples by DG-ENER, IAEA and DOE representatives

NRTA station at 10 m

European

Commission

Element	Areal number density (at/barn)	
	n _{NRTA}	
Mn	$(1.928 \pm 0.003) \times 10^{-2}$	
Со	$(4.509 \pm 0.015) \times 10^{-3}$	
Cu	0	
Nb	$(5.382 \pm 0.010) \times 10^{-3}$	
Rh	$(1.891 \pm 0.003) \times 10^{-3}$	
W	$(2.250 \pm 0.002) \times 10^{-3}$	
Au	_ 0	

NRTA demonstration at GELINA : results

n _{Ref} /n _{NRTA}	Areal number density (at/barn)		Element
	n _{NRTA}	n _{Ref}	
1.014 ± 0.002	$(1.928 \pm 0.003) \times 10^{-2}$	1.901 x 10 ⁻²	Mn
0.984 ± 0.003	$(4.509 \pm 0.015) \times 10^{-3}$	4.583 x 10 ⁻³	Со
	0	0	Cu
0.981 ± 0.002	$(5.382 \pm 0.010) \times 10^{-3}$	5.485 x 10 ⁻³	Nb
1.019 ± 0.002	$(1.891 \pm 0.003) \times 10^{-3}$	1.856 x 10 ⁻³	Rh
0.992 ± 0.001	$(2.250 \pm 0.002) \times 10^{-3}$	2.269 x 10 ⁻³	W
	0	0	Au

NRTA demonstration at GELINA : results

		1		
_	Element	A n _{Ref}	n _{Ref} /n _{NRTA}	f/n _{NRTA}
	Mn	1.901 x		± 0.002
	Со	4.583 x	$1 014 \pm 0 002$	± 0.003
	Cu	0	1.014 ± 0.002	
	Nb	5.485 x	0.984 ± 0.003	.±0.002
	Rh	1.856 x	0.301 - 0.003	± 0.002
	W	2.269 x		2 ± 0.001
	Au	0		
			0.981 ± 0.002	
			1.019 ± 0.002	Piac < 20/
			0.992 ± 0.001	$DIdS \ge Z70$
14				European Commission

Commission

U₃O₈ reference sample EC NRM 171

> Beam attenuation due to matrix ~ 99%

Fit for the amount of ²³⁵U and ²³⁸U

Neutron energy / eV

U₃O₈ reference sample EC NRM 171

U-isotope	Areal number o	Ratio	
	Declaration	NRTA	
²³⁵ U	(5.0326 \pm 0.0080) x 10 ⁻⁴	(5.063 \pm 0.09) x 10 ⁻⁴	1.006
²³⁸ U	(1.0628 \pm 0.0015) x 10 $^{\text{-2}}$	$(1.062 \pm 0.01) \times 10^{-2}$	0.999

\Rightarrow bias < 1.0 %

NRTA is an analytical NDA technique to characterize nuclear material :

- Accurate absolute method

 (bias effects < 2%, accuracy depends on nuclear data)
- Sensitive to almost all nuclides (except for light nuclides)
- Applicable for high radioactive nuclear material
- No calibration requirements using representative calibration standards
- No sample preparation requirements
- No history requirements to determine U and PU content
- Performance of NRTA on complex materials such as debris of melted have been validated by experiments at GELINA

Intensify JRC – JAEA collaboration: Action Sheet - 7

- Active neutron NDA techniques for nuclear non-proliferation, security and safety
 - Neutron Resonance Transmission Analysis (NRTA)
 - Neutron Resonance Capture & Prompt Gamma Ray Analysis (NRCA & PGA)
 - Delayed Gamma Spectroscopy (DGS)
 - Differential Die Away (DDA)

Intensify JRC – JAEA collaboration: Action Sheet - 7

- Active neutron NDA techniques for nuclear non-proliferation, security and safety
 - Neutron Resonance Transmission Analysis (NRTA)
 - Neutron Resonance Capture & Prompt Gamma Ray Analysis (NRCA & PGA)
 - Delayed Gamma Spectroscopy (DGS)
 - Differential Die Away (DDA)
- Strategy
 - Study and improve methodologies
 - Production of calibration and transfer standards
 - Experimental validation at existing facilities
- Use of nuclear facilities at JRC & JAEA
 - JRC Ispra : PUNITA
 - JRC Geel : GELINA, MONNET & Sample preparation
 - JAEA Tokai : TRP PCDF
 - JAEA Tokai : NUCEF

Active Neutron NDA Prototype: JAEA NUCEF

Development of a compact industrial NRTA facility

- Define and validate design parameters of a compact NRTA facility
- Develop and test a radiation resistant neutron detector
- Perform validation experiments with nuclear material (including spent fuel)
- Applications studies (analytical NDA technique with accuracy better than 2%)
 - Decommissioning (including melted fuel from nuclear accidents)
 - Storage and disposal of spent fuel
 - Reprocessing facilities
 - Innovative nuclear fuel cycles
 - Nuclear forensics

- JAEA and JRC successfully demonstrated an innovative technique to characterize complex nuclear material (e.g. melted fuel from nuclear accident):
 - The technique is an absolute method to measure accurately the amount of U and Pu and fission products with a bias < 2%.
 - The technique can be applied for various applications in the nuclear fuel cycle

Atomic Energy Society Japan award : Distinguished Technology Development

• Based on the success of the first collaboration project (AS-1) a new collaborative effort was defined (AS-7) to study and develop active neutron interrogation systems for nuclear non-proliferation, security and safety applications.

Thank you

Twitter: @EU_ScienceHub

LinkedIn: european-commission-joint-research-centre

12

YouTube: JRC Audiovisuals

