

Prepared for "International Symposium on Technology Development for Nuclear Nonproliferation and Nuclear Security"

"The State of the Art of the Nondestructive Assay of Spent Nuclear Fuel Assemblies"

February 10, 2016, Tokyo, Japan

Holly R. Trellue, Stephen J. Tobin Los Alamos National Laboratory, U.S.A LA-UR-16-20376

UNCLASSIFIED

Introduction

- The purpose of this Nondestructive Assay (NDA) research is to develop and test technologies to improve NDA measurements of spent fuel assemblies (SFA).
- One effort being researched for this purpose is the Next Generation of Safeguards Initiative – Spent Fuel (NGSI-SF) project with technical goals:
 - 1. Detect diversion or replacement of pins,
 - 2. Verify initial enrichment, burn-up and cooling time of declaration,
 - 3. Estimate <u>Pu mass</u> in spent fuel,
 - 4. Measure <u>reactivity</u> (multiplication) of each assembly, and
 - 5. Estimate <u>heat</u> emitted from assembly.
- Other projects have also developed spent fuel NDA technology.
- Missing pin detection and other goals support the IAEA Department of Safeguards Long-Term R&D Plan, 2012-2023.

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for NNSA

1

New Technologies for Spent Fuel NDA

Developed as part of NGSI-SF Developed by other projects

Passive:

Comparison of high and low multiplying sections [Passive Neutron Albedo Reactivity (PNAR)] **Spectral/resonance effects** [Self-Integration Neutron Resonance Densitometry (SINRD)] Guide tube neutron and gamma detection [Partial Defect Verification] of Spent Fuel (PDET)] High count rate detectors [new HPGe and LaBr₃ gamma detector hardware; ¹⁰B-based neutron detectors] Time correlated neutrons from coincidence counting [Differential Die-away Self-Interrogation (DDSI)] Active: **Continuous neutron interrogation** [Californium] Interrogation with Prompt Neutron (CIPN)] Active neutron coincidence counting **PNAR**

[Advanced Experimental Fuel Counter

(AEFC) for research reactors] **Time-varying neutron interrogation** [Differential Die-away (DDA) – not built yet] UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for NNSA

HPGe

AEFC

DDSI

PDET

CIPN

Passive Neutron Albedo Reactivity (PNAR) Detector Deployed at FDEC

Section 1 High Multiplying Fission Chamber

Section 2 Ion Chambers

Section 3 Low Multiplying Fission Chambers

- PNAR uses ratio of fission chambers (FCs) in Section 1 (high multiplying) to FCs in Section 3 (low multiplying).
- PNAR measurements of FUGEN assemblies made at Fukushima Daiichi D&D Engineering Company (FDEC) in Tsuruga-shi in West Japan from June 17-27, 2013.

²⁴⁴Cm is main passive source, but many detected neutrons come from induced fission.

UNCLASSIFIED

3

Deployment of CIPN in Republic of Korea (KAERI)

Concept:

- CIPN measures total neutron count rate with/without Californium (Cf) source present.
- Difference in counts arises from multiplication of Cf neutrons, which is proportional to fissile content.

Measurements:

- Occurred September/October 2013 at KAERI, Post Irradiation Examination Facility (PIEF).
- Examined 4 PWR assemblies, burnups ranging from 17 to 38 GWd/tU, cooling times > 20 years.

By D. Henzlova and P. Polk

Self-Integration Neutron Resonance Densitometry (SINRD) Deployment in Republic of Korea (ROK)

Concept: The relative neutron flux among comparts of the neutron energy spectrum are indicative of the isotopes present. The size of water gap between assembly and instrument is significant.

Measurements: 2 ROK assemblies, December 2013

Geometry comprises 4 ²³⁵U fission chambers:

- one wrapped in 3 mm Cd,
- one wrapped in 0.1 mm Gd,
- one "bare" (thermal FM), and
- one embedded in Cd lined borated polyethylene (fast flux).₅

Partial Defect Verification (PDET) Instrument Deployed in ROK and Sweden.

- Normalized gamma-to-thermal neutron ratios are obtained at each measurement/guide tube position.
- The data are arranged sequentially by the quadrant.
- Individual neutron and gamma counts are measured for additional information.
- The shape of counts with location is fairly invariant as long as no pins were missing or replaced with dummy fuel pins.
 - Insensitive to fuel burnup, initial fuel enrichment, and cooling time.
 - Less sensitive to fuel burnup gradient and boron content in pond

6

By Y. Ham, LLNL

Advanced Experimental Fuel Counter

- Designed for research reactors only.
- System uses:
 - Active and passive neutron coincidence counting;
 - An ion chamber for gross gamma-ray counting.

- Extended analysis of passive neutron and gamma-ray count rates helps verify declared burnup, cooling time, and initial enrichment.
- Field trials have occurred as follows:
 - 2006 High Flux Australian Reactor (HIFAR), Australia,
 - 2011 Institute of Nuclear Physics (INP), Uzbekistan, and
 - 2014 Institute of Nuclear Physics (INP), Uzbekistan.

UNCLASSIFIED

By K. Miller, H. Menlove

7

Differential Die-away Self-Interrogation (DDSI)

- Comprises ³He tubes, 40-cm length.
- Interrogating source is spontaneous and (α,n) passive neutrons from the spent fuel itself.
- Swedish deployment planned in near future.

NATIONAL LABORATORY

Concept:

- Time correlated neutron coincidence counting on small time scales where every detected neutron acts as a trigger event.
- Key point: <u>early time domain of neutron</u> <u>coincidences contains information</u> <u>about assembly multiplication.</u>

UNCLASSIFIED

⁸

DDSI Applications

- Early time-domain measured by a Rozzi Alpha Distribution (RAD) can be fit with single exponential function; decay constant is nearly linearly proportional to leakage multiplication.
- Plutonium (Pu) mass determined using singles count rate and multiplication obtained from early dieaway analysis.
- Pin diversion can be detected detection with Pu mass or reference assembly approach and fast/slow magnitude.
- DDSI can be applied to fresh MOX samples to measure both fertile (²⁴⁰Pu)
 and fissile (²³⁹Pu) components.

Differential Die-Away (DDA)

- Active source is a commercial-off-the-shelf 14 MeV Deuterium-Tritium generator (~2 x 10⁸ n/s).
- Neutrons transported and multiplied through assembly and detected in ³He tubes vary with fissile material.
- May provide fast estimation of plutonium in spent fuel with low uncertainty; higher precision than passive techniques achieve.

Operated by the Los Alamos National Security, LLC for NNSA

10

Another illustration of the complexity of the fuel using differential die-away (DDA) simulations

- 64 assemblies were simulated two ways:
 - All isotopes included, and
 - With ²³⁸U, ²³⁵U, ²³⁹Pu,
 ²⁴¹Pu, and Oxygen only (fission products and most actinides missing).
- Count rate without absorbers is proportional to mass; absorbers can be estimated from burnup simulations.
- Count rate depends on Initial Enrichment (IE) and burnup (GWD/MTU).

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for NNSA

os Alamos

Four new instruments proposed for deployment at Clab facility in Sweden as two hardware units

(1) Differential Die-Away Self-Interrogation &(2) Passive Neutron Albedo Reactivity

- Passive
- DDSI correlated neutron coincidence counting
- PNAR with and without a Cd liner

(1) Differential Die-Away &(2) Californium Interrogation Prompt Neutron

- Active
- DDA time correlated counts after a burst of neutrons
- CIPN change in count rate from continuous neutron source

Improved High Count Rate Gamma Technology

- Ultra-high rate HPGe spectroscopy is researched.
 - Gamma counts of interest are a small fraction of the passive backgrounds.
 - Extreme counting rate (<u>events to the energy</u> <u>spectrum</u>) is critical to keep measurement times under control.
- High count rate commercial-off-the-shelf LaBr-based scintillation detectors can be improved using:
 - Preamplifiers with rise time correction, and
 - External pile-up rejecters.
- Gamma ray mirrors enhance signal-to-noise by
 - Directing narrow band around signal of interest to detector, or
 - Reflecting dominant background gamma rays away from detector.

Gamma-ray optic with 5 mirrors

Conclusions

- Many new NDA instruments have been deployed as part of the NGSI-SF project: CIPN, PNAR, and SINRD.
- Our team is in the process of measuring 25 PWR and 25 BWRs at Clab in Sweden with DDSI and DDA as part of NGSI-SF project.
- Other instruments of interest that have been built and deployed for spent fuel NDA measurements recently include PDET and AEFC.
- Promising new gamma and neutron detector technologies have also been developed.

UNCLASSIFIED

Acknowledgements

- The authors acknowledge the support of the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA).
- Members of NGSI-Spent Fuel Team 2014-15: G. Baldwin⁴, A. Belian¹, T. Burr¹, P. De-Baere⁵, A. Favalli¹, M. Fensin¹, M. Fugate¹, J. Galloway¹, I. Gauld⁶, S. Grape³, B. Grogan⁶, Y. Ham⁷, J. Hendricks¹, V. Henzl¹, J. Hu⁶, K. Ianakiev¹, G. Ilas⁶, P. Jansson³, H. Liljenfeldt⁶, T. Martinik^{1,3}, H.O. Menlove¹, D. Meyers⁹, V. Mozin⁷, M. Newell¹, P. Polk¹, S. Pozzi⁸, C. Rael¹, P. Santi¹, P. Schwalbach⁵, A. Sjöland², S. Jacobsson Svärd³, M.T. Swinhoe¹, S.J. Tobin¹, A. Trahan^{1,8}, T.J. Ulrich¹, S. Vaccaro⁵, D. Vo¹, A. Worrall⁶

¹Los Alamos National Laboratory, ²Swedish Nuclear Fuel and Waste Management Company,³Uppsala University, ⁴Sandia National Laboratories, ⁵European Atomic Energy Community,⁶Oak Ridge National Laboratory, ⁷Lawrence Livermore National Laboratory, ⁸University of Michigan

UNCLASSIFIED

