独立行政法人日本原子力研究開発機構の
平成 23 年度の業務運営に関する計画
（年度計画）
（平成 23 年 4 月 1 日～平成 24 年 3 月 31 日）

平成 23 年 3 月 31 日制定
平成 24 年 1 月 17 日変更

独立行政法人日本原子力研究開発機構
目次

序文..4
前文..4
Ⅰ．国民に対して提供するサービスその他の業務の質の向上に関する目標を達成するためとるべき措置 ...5
1．エネルギーの安定供給と地球温暖化対策への貢献を目指した原子カシステムの大型プロジェクト研究開発 ...5
 (1) 高速増殖炉サイクル技術の確立に向けた研究開発 ...5
 1) 高速増殖原型炉「もんじゅ」における研究開発 ..5
 2) 高速増殖炉サイクル実用化研究開発 ..6
 3) プロジェクトマネジメントの強化 ..8
 (2) 高レベル放射性廃棄物の処分技術に関する研究開発 ...8
 1) 地層処分研究開発 ..8
 2) 深地層の科学的研究 ...9
 3) 知識ベースの構築 ..10
 (3) 核融合エネルギーを取り出す技術システムの研究開発 ...10
 1) 国際熱核融合実験炉（ITER）計画及び幅広いアプローチ（BA）活動10
 2) 炉心プラズマ研究開発及び核融合工学研究開発 ..12
2．量子ビームによる科学技術の競争力向上と産業利用に貢献する研究開発 ...14
 (1) 多様な量子ビーム施設・設備の整備とビーム技術の研究開発..14
 (2) 量子ビームを応用した先端的な研究開発 ...15
3．エネルギー利用に係る技術の高度化と共通的科学技術基盤の形成 ...17
 (1) 核燃料物質の再処理に関する技術開発 ..17
 (2) 高温ガス炉とこれによる水素製造技術の研究開発 ..18
 (3) 原子力基礎工学研究 ...18
 (4) 先端原子力科学研究 ...21
4．原子力の研究、開発及び利用の安全の確保と核不拡散に関する政策に貢献するための活動 ...21
（1）安全研究とその成果の活用による原子力安全規制行政に対する技術的支援
（2）原子力防災等に対する技術的支援
（3）核不拡散政策に関する支援活動
5. 自らの原子力施設の廃止措置及び放射性廃棄物の処理処分に係る技術開発
（1）廃止措置技術開発
（2）放射性廃棄物処理処分・確認等技術開発
6. 放射性廃棄物の埋設処分
7. 産学官との連携の強化と社会からの要請に対応するための活動
（1）研究開発成果の普及とその活用の促進
（2）民間事業者の核燃料サイクル事業への支援
（3）施設・設備の供用の促進
（4）特定先端大型研究施設の共用の促進
（5）原子力分野の人材育成
（6）原子力に関する情報の収集、分析及び提供
（7）産学官の連携による研究開発の推進
（8）国際協力の推進
（9）立地地域の産業界等との技術協力
（10）社会や立地地域の信頼の確保に向けた取組
Ⅱ. 業務運営の効率化に関する目標を達成するためとるべき措置
1. 効率的、効果的なマネジメント体制の確立
（1）柔軟かつ効率的な組織運営
（2）内部統制・ガバナンスの強化
（3）人材・知識マネジメントの強化
（4）研究組織間の連携による融合相乗効果の発揮
2. 業務の合理化・効率化
（1）経費の合理化・効率化
（2）人件費の合理化・効率化
（3）契約の適正化
（4）自己収入の確保
（5）情報技術の活用等 ...37

3. 評価による業務の効率的推進 ..38

Ⅲ. 予算（人件費の見積りを含む）、収支計画及び資金計画38
 1. 予算 ..38
 2. 収支計画 ..40
 3. 資金計画 ..41

Ⅳ. 短期借入金の限度額 ...42

Ⅴ. 重要な財産を譲渡し、又は担保に供しようとするときはその計画42

Ⅵ. 剰余金の使途 ...42

Ⅶ. その他の業務運営に関する事項 ..42
 1. 安全確保及び核物質等の適切な管理の徹底に関する事項42
 2. 施設及び設備に関する計画 ..44
 3. 放射性廃棄物の処理及び処分並びに原子力施設の廃止措置に関する計画45
 4. 国際約束の誠実な履行に関する事項 ...49
 5. 人事に関する計画 ...49
序文

独立行政法人通則法（平成11年法律第103号）第31条第1項の規定に基づく独立行政法人日本原子力研究開発機構（以下「機構」という。）の平成23年度の業務運営に関する計画（以下「年度計画」という。）を次のとおり定める。

平成23年度の年度計画は平成23年3月11日に発生した東北地方太平洋沖地震による震災前に閣議決定され、平成23年3月29日に成立した平成23年度政府予算に基づき、復旧計画立案の状況又は情勢の変化に応じ、適宜見直すことを前提として、年度当初に策定されたが、その後、施設設備の被災状況の詳細が明らかとなるとともに復旧経費を含む補正予算が成立したため、被災拠点の復旧及び安全対策等に係る業務を年度計画に追記するとともに、施設・設備の被災等に伴い事業計画の変更を余儀なくされたものについての必要な変更を行った。なお、今後も復旧の進捗状況、情勢の変化、政府における原子力・エネルギー政策の見直しの議論の方向性、中期計画の変更等に伴い、適宜見直すことを前提とする。そのため、「もんじゅの40%出力プラント確認試験の開始」等は、今年度は見送りとなっているが、今回の変更に当たってはその修正の記載は行っていない。

前文

平成23年度は、東北地方太平洋沖地震により被害を受けた施設・設備の復旧や研究施設の安全確保を図りつつ、必要な研究開発を着実に進めるとともに、原子力分野の総合的な研究機関としての役割を果たしていく。各事業の実施に当たっては、地震による影響を精査し、復旧及び安全対策等新たに必要となった業務を考慮する。復旧業務及び安全対策の実施に当たっては、最大限の費用対効果が得られるよう、既存の事業と同様に実施の範囲、日程及び方法の選択等を合理的に行い、効率的遂行を図る。また、事業の実施に当たっては、安全確保を大前提として、限られた経営資源を従前にも増して効果的かつ効率的に活用するとともに、組織間の有機的な連携の強化を図る。さらに、業務運営においては、PDCAサイクルに基づく経営管理機能強化及び経営の下での、内部統制・ガバナンスの強化、人材・知識マネジメントなど取組強化を図る。
Ⅰ. 国民に対して提供するサービスその他の業務の質の向上に関する目標を達成するためとるべき措置

1. エネルギーの安定供給と地球温暖化対策への貢献を目指した原子カシステムの大型プロジェクト研究開発

(1) 高速增殖炉サイクル技術の確立に向けた研究開発

1）高速増殖原型炉「もんじゅ」における研究開発

高速増殖原型炉「もんじゅ」においては、炉内中継装置の引き抜き・復旧作業、設備点検、水・蒸気系機能確認試験及び屋外排気ダクトの交換を実施し、40%出力プラント確認試験を開始する。

また、燃料製造技術開発試験で得られたペレットを利用して、「もんじゅ」の性能試験に装荷する燃料を供給するとともに、プルトニウム燃料第三開発室等の加工事業許可申請に係る許認可対応を進める。さらに、六ケ所再処理工場からＭＯＸ燃料を受け入れるための許認可準備を継続するとともに、輸送容器の安全性実証試験結果を基に、設計承認申請の準備を行う。

① 発電プラントとしての信頼性実証

設備点検等を通じて得られる運転経験及び保守・補修経験等を蓄積して評価する。

炉心確認試験結果を詳細分析し、解析コード等の確証及び改良に活用するとともに、分析結果を40%出力プラント確認試験要領書に反映する。

40%出力プラント確認試験の準備として事前解析及び実証炉設計検討への反映を目指したプラント動特性解析コードの汎用化のための、原子炉容器上部フレナム部の解析モデルの改良を行う。

② 運転経験を通じたナトリウム取扱技術の確立

炉心確認試験結果のナトリウム純度管理や放射性物質冷却系内移行挙動に関するデータを分析するとともに、分析結果を40%出力プラント確認試験内容に反映する。また、100%出力プラント確認試験以降の実施計画
書の作成を開始する。
機器・設備の検査・モニタリング技術については、供用期間中検査（ISI）装置を「もんじゅ」の定期検査に適用するための検査基準の検討を継続し、その骨子をまとめる。

③ 高速増殖炉の実用化に向けた研究開発等の場としての利活用
運転サイクル延長及び照射能力付与について炉心の概念成立性検討を行う。
ナトリウム工学研究施設（旧プラント実環境研究施設（仮称））の整備については、建屋の建設を着工するとともに、設備の設計・製作を進める。

2) 高速増殖炉サイクル実用化研究開発
革新技術の採否判断、性能目標達成度評価に対する国の評価結果に基づき、見直された研究開発計画と開発目標／設計要求の下、高速増殖炉サイクル実用化研究開発（FaCT）フェーズⅡを開始することとしていたが、東日本大震災復旧・復興事業に充てる財源確保のため、独立行政法人日本原子力研究開発機構運営費交付金に必要な既定予算が修正減少されたことを受け、高速増殖炉サイクル実用化研究開発（FaCT）フェーズⅡへの移行は見送る。将来の原子力政策におけるその位置づけが定まるまでの間、ナトリウム（Na）冷却高速増殖炉（MOX燃料）については、安全設計の考え方の再構築や技術基盤の維持のために必要な取組を実施し、より高度な安全性・信頼性を備えた高速増殖炉技術の検討を行う。燃料製造技術及び再処理技術については、技術基盤の維持や安全性や信頼性向上等に係る基礎データの取得等を行う。

①-1 ナトリウム（Na）冷却高速増殖炉（MOX燃料）
実証炉の概念設計には着手せず、安全設計の考え方の再構築と技術基盤の維持に限定して実施する。
Na 冷却高速増殖炉における安全設計クライテリア（SDC）の構築とその国際標準化を目指し、SDC の要件整理、事象区分と想定事象の分析、安全設計対策への要求整理、及び SDC に適合する炉停止、炉心冷却、パウ
ンダリ確保等の安全対策の検討を行う。
SDC の根拠となるデータを取得するとともに、Na 冷却高速増殖炉の研究開発に必要な技術基盤の維持を行う。

冷却系機器開発試験について、建設途中の試験建屋工事を完了する。その上で、仕掛品の保管管理に係る作業を実施する。「常陽」については、第 15 回施設定期検査を継続するとともに、炉心上部機構（UCS）の交換のためのジャッキアップ装置等の製作の着手及び計測線付実験装置（MARICO-2）試料部の回収に関する設計検討を継続する。また、運転再開後の照射試験等に係る設置変更許可申請の準備を完了する。

①-2 燃料製造技術
技術基盤の維持及び安全性・信頼性の検討に必要なデータ取得に限定して実施する。
燃料製造システムの安全性や信頼性向上等の観点から製造工程プロセスに関わる基礎データを取得する。
また、技術基盤の観点から、MOX 燃料の照射挙動評価や燃料製造技術の開発に必要とする燃料の基礎物性データを取得する。

①-3 再処理技術
技術基盤の維持及び安全性・信頼性の検討に必要なデータ取得に限定して実施する。
技術基盤の観点から、再処理プラントの設計データベースの整備及び技術開発項目的整理を行う。
また、将来の再処理プラントシステムの安全性・信頼性向上等の最適化等の観点から、再処理の主要工技術について基礎データの収集、整理及び解析評価を行う。

② 高速増殖炉サイクル技術の研究開発支える技術基盤
高速増殖炉サイクル技術の副概念として基盤的な位置付けで取り組んでいる金属燃料サイクルについては、大学や機構外の研究機関等と連携を図り、基礎データの収集、整理及び解析評価を行う。
ナトリウムの化学的活性度の抑制を目的としているナノ粒子分散ナトリウムの高速炉への適用化開発では、高速炉環境下での適用効果を評価するための反応抑制データを取得する。

3) プロジェクトマネジメントの強化

プロジェクト統括機能の強化のために改正した新たな組織体制の下で、プロジェクトが着実に進むよう必要予算の精査を行うとともに、プロジェクトの状況を勘案した事業の取組について適切な管理を行う。また、研究開発の進め方について、外部委員会を開催する。

(2) 高レベル放射性廃棄物の処分技術に関する研究開発

1) 地層処分研究開発

① 処分場の設計や安全評価の信頼性を向上させるため、地層処分基盤研究施設や地層処分放射化学研究施設等を活用して、人工バリアの長期挙動に関するモデルの高度化やデータベースの拡充を継続するとともに、緩衝材の膨潤特性試験法の標準化に向けてさらにデータを拡充する。また、緩衝材中における核種の現象論的収着・拡散モデル及び基本定数データベースを構築する。

② 深地層の研究施設等の成果を活用して、地質環境の特徴を踏まえた性能評価の考え方や天然現象による長期変動等を考慮した現実的な性能評価手法を整備する。また、熱-水-応力-化学連成プロセスに関する坑道内での試験計画を作成する。幌延深地層研究所では、低アルカリ性セメントを用いたコンクリートの吹付け施工による周辺岩盤や地下水への影響を観測するとともに、人工バリアの工学技術に関する研究を通して、国が進める地層処分実規模設備整備事業に協力する。
2）深地層の科学研究

① 深地層の研究施設計画

岐阜県瑞浪市及び北海道幌延町の2つの深地層の研究施設計画について、坑道掘削時及び掘削した坑道内での調査研究を進めながら、地質環境を調査する技術や深地層における工学技術の信頼性を確認し、原子力発電環境整備機構（NUMO）による精密調査や国による安全審査基本指針の策定等を支える技術基盤を整備する。掘削した水平坑道については、深地層での体験を通じて、地層処分に関する国民との相互理解を促進する場としても活用する。

瑞浪超深地層研究所については、深度300mの水平坑道内で、坑道周辺岩盤の地質環境特性や岩盤中の物質移動を把握するためのポーリング調査を実施する。また、2本の立坑（主立坑及び換気立坑）を深度500m程度まで掘削しながら、坑道壁面の連続的な地質観察や岩盤の変位観測等を実施して、花崗岩体の性状や断層・割れ目の分布等を把握する。坑道の掘削が地質環境に与える影響等を評価するため、坑道壁面の湧水観測装置（深度約25mごとに設置）や、地上及び既設の水平坑道（深度100m、200m、300m、400m）から掘削したポーリング孔内の地下水観測装置により、坑道内への湧水量や地下水の水圧・水質の変化を継続的に観測する。これらの調査で得られる情報に基づき、地上からの調査研究で構築した地質環境モデルと対比しながら、地質環境の調査技術やモデル化手法の妥当性等を評価する。あわせて、坑道の設計・施工技術等の適用性を確認する。

幌延深地層研究所については、これまでに整備した水平坑道（深度140m、250m）内においてポーリング調査等を実施し、坑道周辺の地質環境特性を詳細に把握するとともに、新たに物質移動に関する試験や地震観測を開始する。また、換気立坑（深度350m程度まで）、東立坑（深度300m程度まで）及び西立坑（深度50m程度まで）の掘削を進めながら、坑道壁面の連続的な地質観察や岩盤の変位観測等を実施して、堆積岩層の性状や断層・割れ目の分布等を把握する。坑道掘削に伴う地質環境への影響等を把握するため、坑道壁面の深度約35mごとに設置する湧水観測装置や坑道から掘削するポーリング孔を用いて、湧水量や水圧・水質の変化を観測。
するとともに、地上からのボーリング孔に設置した地下水観測装置等によ
り、坑道周辺における地質環境の変化を観測する。また、坑道近傍に発生
する掘削影響領域を評価するための物理探査等を実施する。これらの調査
で得られる情報に基づき、地上からの調査研究で構築した地質環境モデル
と対比しながら、地質環境の調査技術やモデル化手法の妥当性等を評価す
る。あわせて、坑道の設計・覆工技術の適用性や湧水抑制対策の有効性等
を確認する。加えて、塩水と淡水との境界領域における地下水流動や水質
分布等を把握するための調査技術の体系化を行う。

② 地質環境の長期安定性に関する研究
地殻変動等に伴う地質環境条件の変動幅を予測するための手法及び変
動地形が明瞭でない活断層や坑道内等で遭遇した断層の活動性を評価す
るための手法を整備する。

3) 知識ベースの構築
上記 1) 及び 2)で得られる成果に基づき、地層処分の安全確保の考え方や
安全評価に係る様々な論拠を知識ベースとして体系化し、適切に管理・継
承していく。そのため、平成 22 年度（2010 年度）までに整備した知識マ
ネジメントシステムを維持・運営しながら、研究開発成果に基づく知識ベ
ースの拡充を図り、実施主体や規制関連機関等の利用に供していく。

(3) 核融合エネルギーを取り出す技術システムの研究開発

1) 国際熱核融合実験炉（ITER）計画及び幅広いアプローチ（BA）活動
「イーター事業の共同による実施のためのイーター国際核融合エネルギ
ー機構の設立に関する協定（ITER 協定）」に基づき、ITER 計画における我
が国の国内機関として、「ITER 国際核融合エネルギー機構（ITER 機構）」を
支援するとともに、我が国が調達責任を有するトロイダル磁場（TF）コイ
ル用超伝導素線、焼線及びジャケットティングの製作を継続し、コイル 1 個
分のジャケットティングを完了する。また、TF コイルの巻線・構造物の実規
模試作に関して、構造物実機大セグメントやダブルパンケーキの試作に係
る契約を締結する。さらに、ダイバータプロトタイプ支持構造体及び遠隔保守機器の製作設計に係る契約を締結する。

加熱装置や計測機器等の調達準備作業を実施し、技術仕様の確定に反映する。また、ITER 計画に対する我が国の人的貢献の窓口及び ITER 機構からの業務委託の連絡窓口としての役割を果たす。ITER 機構にリゾンを派遣し、これらの業務を支援するとともに、国内機関として行う調達活動を円滑化する。

「核融合エネルギーの研究分野におけるより広範な取組を通じた活動の共同による実施に関する日本国政府と欧州原子力共同体との間の協定（BA協定）」の各プロジェクトの作業計画に基づいて、実施機関としての活動を行う。国際核融合エネルギー研究センターに関する活動として、原型炉概念の構築を目的とした日欧共同設計作業（第 2 段階）を実施し、共通システムコード開発のためその基本プログラム設計を確定する。原型炉 R&D 棟において所要の設備・機器の整備を進め、放射性同位元素等による放射線障害の防止に関する法律に基づく許認可を取得し、トリチウムの放射線を測定するイメージングプレート法等によるトリチウム計量データを取得する。核融合計算機シミュレーションセンターでは、高性能計算機運用の枠組みの検討を終了し、平成 24 年（2012 年）初頭より運用を開始する。このために必要な周辺設備（冷却設備、電源設備等）の整備を平成 23 年（2011 年）中頃までに行う。国際核融合炉材料照射施設の工学実証・工学設計活動に関しては、被災によりリチウム試験ループの第一期実験運転は不可能となったため取りやめ、被災したリチウム試験ループの修復を行う。六ヶ所サイトに設置する加速器設備の運転に不可欠な周辺設備（冷却設備及び電源設備）の製作を継続するとともに、高周波入力結合器の製作を開始する。また、加速器試験における遮蔽性能や排気設備の性能等の評価を継続し、放射線管理区域設定のための許認可申請書類を作成する。サテライト・トカマク計画として日本分担機器の超伝導コイル、真空容器及びダイバータの製作を継続し、真空容器 120 度分の製作を完了するとともに、クライオスタット材料調達や真空容器支持脚及びポート部、遠隔保守機器等の製作に係る契約を締結する。また、装置アセンブリの詳細検討を行い、トカマク本体機器の各種組立て用治具に関する概念検討を完了する。JT-60SA
の研究計画を国内及び日欧で幅広く議論し、JT-60SA リサーチプラン文書を改訂する。

理解増進のため、引き続き地元説明会、施設公開、公開講座等の実施により、情報の公開や発信に積極的に取り組む。

核融合エネルギーフォーラム活動を通じて、大学・研究機関・産業界間で関連情報の共有を図るとともに、ITER 計画と BA 活動等にかかわる連携協力の役割分担を適切に調整する。国内核融合研究と学術研究基盤及び産業技術基盤との有機的連結並びに国内専門家の意見や知識の集約、蓄積等を円滑かつ効率的に進め、ITER 計画、BA 活動等に国内研究者の意見等を適切に取り込みつつ、国内核融合研究と ITER 計画及び BA 活動との成果の相互還流に努める。

2) 炉心プラズマ研究開発及び核融合工学研究開発

トカマク国内重点化装置計画として、JT-60 装置の解体を大きく進展させ、真空容器やトロイダルコイル等のトカマク本体の解体・撤去を行う。

JT-60SA で再使用する JT-60 既存設備の点検・維持・保管運転を実施する。

また、中性粒子ビーム加熱装置においては、電源改造に要する増設建屋を竣工するとともに、電源機器の一部を調達する。高周波加熱装置においては、JT-60SA 用複数周波数ジャイロトロンを製作する。電源設備や計測装置等の改修に着手し、プラズマ着火用高電圧発生回路の国内調達に関わる契約を締結するとともに、ダイバータ静電プローブを製作する。

JT-60 の実験データ解析を更に進めるとともに、国際装置間比較実験や炉心プラズマに関する国際データベース活動等の国際研究協力を一層積極的に展開し、燃焼プラズマ制御研究や定常高ベータ化研究を推進する。これらにより、ITER での燃焼プラズマの長時間維持や JT-60SA での先進プラズマの定常化に必要な制御手法を確立するために、高ベータ安定性並びに輸送特性並びにダイバータ熱・粒子制御特性及びその外挿性を評価する。

炉心プラズマの制御技術向上に資するため、コアプラズマ輸送コードをベースとする統合予測コードへの外部コイル・導体系モデル等の統合を進め、ITER や JT-60SA でのプラズマ特性を評価する。

燃焼プラズマの最適化のための理論的指針を取得するため、プラズマ乱
流シミュレーションモデルの高度化及び運動論的 MHD モデルによる理論・シミュレーション研究を行う。
また、大学等との相互の連携・協力を推進し、人材の育成に貢献するため、JT-60 及び JT-60SA を包含した公募型の国内重点化装置共同研究を実施する。

増殖ブランケットの開発では、那珂核融合研究所施設の被災により、機械試験による製作技術の妥当性確認が不可能となったため取りやめ、ITER での試験に向けて、実機材料 F82H による試験モジュール後壁の実規模モックアップの製作に着手する。また、DT 中性子によるトリチウム生成・回収試験では、核融合中性子源施設の被災により、トリチウム放出化学形の温度依存性に係る基礎データの拡充を図ることが不可能となったために取りやめ、トリチウム放出化学形の温度依存性に係る基礎データの拡充の準備として、装置改良を行う。

核融合炉材料の開発では、低放射化フェライト鋼の照射試験を実施して、接合部照射後靭性評価等の ITER での増殖ブランケット試験用データ取得を行うとともに、先進的なトリチウム増殖材料の微小球の製造技術開発として、より焼結密度の高い微小球の試作試験を実施する。

核融合工学技術の研究開発では、先進超伝導線材の機械特性評価を行うとともに、トリチウムの閉じ込め及び材料との相互作用に関する基礎データを取得する。核融合中性子源施設の被災により、チタン体系を用いた DT 中性子入射積分実験の実施は不可能となったために取りやめ、増殖ブランケット候補材に含まれるシリコン、ジルコニウム及びアルミニウムの核データを検証するために、ベンチマーク実験の解析を実施する。また、加熱装置の高度化研究として、複数周波数での高周波伝送試験を継続し、2つの周波数 170GHz 及び 137GHz 双方での長パルス・大電力伝送を実証する。

MeV 級イオン源試験装置の被災により、真空絶縁実験は不可能となったために取りやめ、大型負イオン源での一様性改善試験を実施する。炉システム研究では、原型炉の核特性を総合的に評価するための核設計コードを整備する。

国際核融合エネルギー研究センターで進める BA 活動と、核融合炉工学研究、理論・シミュレーション研究等との段階的集約について具体化に向
けた検討を継続する。

2. 量子ビームによる科学技術の競争力向上と産業利用に貢献する研究開発

(1) 多様な量子ビーム施設・設備の整備とビーム技術の研究開発

リニアックエネルギー増強に必要な加速空洞の製作を進めるとともに、ビーム診断機器や冷却水装置などの周辺機器の製作を完了させ、1MW に向けた整備を継続する。

ダイナミクス解析装置、ナノ構造解析装置、階層構造解析装置及び物質構造解析装置の調整運転を完了し、これに 4 次元空間中性子探査装置を加えた 5 台の共用ビームラインについて、被災の影響により遅延した運用を、年度末までに開始する。また、中性子ターゲット損傷を軽減するための気泡注入系の高度化及び分割型容器の開発に着手する。さらに、高性能スーパーミラーを応用した中性子輸送・集光システムの特性評価を実施する。

研究炉 JRR-3 では、冷中性子ビーム高強度化のためのテーパー型中性子鏡管の製作を行う。研究炉 JRR-4 では、ホウ素中性子捕捉療法の乳がんへの適用拡大を図るため、中性子ビームの深さ方向のピーク位置を制御できる中性子フィルターの製作を行う。また、他器官への中性子照射を抑制するため、専用コリメータの設計を行う。

荷電粒子・RI 利用研究に資するための加速器・ビーム技術の開発では、多重極磁場による数百 MeV 級重イオンの大面積均一ビーム形成の実現に向けて、ビーム輸送試験を実施するとともにビーム強度分布計測技術の開発を行う。

レーザーの医療・産業応用への貢献を拡大するため、前年度に実施した要素技術開発を基に、希土類添加セラミックス結晶薄膜を用いて、1kHz までの高繰り返し動作が可能な半導体レーザー励起による高効率のレーザー光增幅技術の開発を開始する。前年度に開発した高エネルギーイオン計測法等を用いて、極短パルス高強度レーザーを用いて発生する粒子線のエネルギーを向上させるための条件を探索する。光飛翔鏡法による短波長 X 線の特性評価を行う。さらに、前年度に整備したプロトタイプ機を利用し、コヒーレント X 線を用いて微細形状の時間的変化が計測できるポンププローブ計測法の
精度向上に必要な同期法を確立する。

(2) 量子ビームを応用した先端的な研究開発

1) 環境・エネルギー分野へ貢献する量子ビームの利用
量子ビームの利用により環境・エネルギー問題の克服に寄与するため、前年度に開発した手法や選定素材を活用し、燃料電池膜の導電性向上に必要なブロックグラフト鎖構造の確定並びにバイオディーゼルを合成可能な基材材質の選定及び溶媒組成の最適化並びに有機水素化合物検知材料に適した触媒及び着色材の選定並びに医用天然高分子ゲル材料の放射線による白濁化を誘起する添加物候補の選定並びに炭化ケイ素（SiC）半導体デバイスのイオン入射による破壊現象の評価に必要な測定パラメータの決定を行う。

高レベル廃液から4価プルトニウム及び3価アクチノイドを選択的に分離し、処理工程を簡素化できる抽出剤として前年度に開発したフェナントロリンアミド（PTA）のイオンサイズ認識能を明らかにする。また、アニオン伝導型燃料電池電極触媒の電子状態及び局所構造、水素貯蔵金属の表面酸化・水素化等を放射光で観察・解析する技術を開発する。

レーザーを利用した原子カシステム保守保全技術の原子炉配管への実装に向けた準備を行う。また、レーザーコンプトンガンマ線を用いた核種分析法の開発では、プルトニウム測定用のモンテカルロミュレーションコードを整備する。量子制御による同位体選択励起に向けて、分子内部状態の計測手法を開発するとともに、THz 波源の高強度化を行う。さらに、放射性廃棄物等の分離・分析技術の高度化のため、高強度場による物質制御に向けて、近赤外ポンプ-真空紫外ブロープシステムを用いた実時間光電子スペクトル計測を行う。

2) 物質・材料の創製に向けた量子ビームの利用
超伝導体、磁性材料、ソフトマター等の構造と機能との関連を把握するため、偏極中性子散乱、コントラスト変調法等の実験技術・手法の開発を進める。なお、JRR-3 に設置した各種中性子散乱装置の被災により、3 次元
イメージングを用いた実験技術・手法の実施が不可能となったために取りやめ、装置の復旧を行う。また、高圧中性子回折、時分割X線回折、超高分解能X線回折等の開発を行い、水素化物、磁性材料、超伝導体等の解析に適用する。共鳴X線回折・共鳴非弾性散乱により、高圧・極低温等における電子状態を測定する技術を開発する。リラクサー強誘電体中の動的構造観察のため、X線スペックル回折測定技術の高度化を行う。軟X線領域での放射光利用法の展開を進め、ウラン化合物及びその関連物質や水素吸収物質の電子構造等の解析に適用する。鉄ニクタイド・鋼酸化物の高温超伝導機構解明に必要なシミュレーションコードを開発する。

中性子イメージ増倍装置の導入や斜入射法の採用等により燃料電池内部の水分布を高空間分解能で観察する技術開発を進めるとともに、即発γ線分析における測定自動化を行い、パルク試料中重金属の非破壊検出の高効率化に結び付ける。なお、JRR-3に設置した中性子ラジオグラフィー装置の被災により、高時間分解能観察技術開発の実施が不可ったために取りやめ、装置の復旧を行う。また、中性子を用いた集合組織解析技術については、JRR-3及びJ-PARCの被災により、研究の進め方を見直して開発に着手する。放射光による材料内部局所ひずみの時分割測定システムを構築する。

3) 生命科学・先進医療・バイオ技術分野を切り拓く量子ビームの利用

中性子とX線を相補的に用いたタンパク質の全原子構造解析技術を確立するため、分子動力学計算を用いて、これまでに取得した中性子散乱データから原子個々のダイナミクス情報を導出する手法を開発する。なお、JRR-3に設置した中性子単結晶回折装置の被災により、中性子単結晶回折装置の高度化、大型結晶作製技術の開発等、構造解析の高精度化に向けた基盤技術の開発と、生体物質系の構造・ダイナミクス解明に必要な中性子散乱データの収集が不可能になったため、これらを取りやめ、装置の復旧を行う。

重イオンががん組織に及ぼす影響を細胞レベルで明確にして放射線治療の革新等に貢献するため、マイクロビームを用いてヒト細胞等におけるバイスタンダー効果に関与する細胞間シグナル伝達機構を解析する技術を開
発する。クラスターDNA損傷の修復と突然変異との関連性を明らかにする手法を確立するとともに、細胞内器官の撮像を可能とするレーザープラズマ軟X線顕微鏡装置を開発する。また、がんの診断・治療を実現する新規RI薬剤送達システム（RI-DDS）を開発するため、RI標識生理活性物質合成のための最適条件を決定する。

イオンビーム等を用いて有用微生物・植物資源を創成するため、バイオ肥料に適した根粒菌の新品種の作出や植物組織の突然変異の効率的検出に不可欠な新規マーカーの開発を行う。さらに、植物中の炭素動態モデルの構築に必要なRIイメージング技術を開発する。

3. エネルギー利用に係る技術の高度化と共通的科学技術基盤の形成

（1）核燃料物質の再処理に関する技術開発

1）基礎データ取得に係る試験を継続するとともに、ガラス固化技術開発施設（TVF）のガラス溶融炉の炉内点検等により採取した健全性に関するデータの評価結果に基づく試験等により白金族元素の挙動等に係るデータを取得する。ガラス固化技術開発施設（TVF）の被災により、施設の点検を行うつつ、一部を復旧する。

2）ふげんMOX使用済燃料を用いた再処理試験について、実施計画の策定等、試験実施に向けた準備を進める。再処理施設の被災により、MOX使用済燃料再処理に関する知見の調査・整理は不可となったために取りやめ、再処理施設の一部を復旧する。

3）燃焼度の高い軽水炉ウラン使用済燃料の再処理試験の実施に向けた安全審査への対応及び対象燃料の受入に係る設備改造の検討については、再処理施設の被災により、その対応を取りやめ、国から指示されている緊急安全対策等に係る安全審査への対応を進める。また、共同研究者である電気事業者と協議を継続し、試験実施内容の具体化を図る。
(2) 高温ガス炉とこれによる水素製造技術の研究開発

高温工学試験研究炉（HTTR）の被災により、安全性実証試験（炉心流量喪失試験）等の実施及び限界性能データ等の取得・評価が不可能になったため、高温ガス炉水素製造システムの安全性の確認を取りやめ、国からの指示による地震応答解析等を用いた施設の健全性に関する総合評価を進める。また、小型高温ガス炉の概念設計として炉心核熱設計を行い、設計検討書としてまとめると、熱化學水素製造法である IS プロセスの構成機器の健全性を検証するため、高温硫酸環境に耐える装置材料を用いた硫酸分解器を製作するとともに、プロセスデータの充足としてヨウ化水素濃縮膜特性の温度依存性データを取得する。また、IS プロセスで製造した水素を貯蔵／輸送するシステムの評価方針を検討する。

(3) 原子力基礎工学研究

1) 核工学・炉工学研究

評価済み核データライブラリ JENDL のエネルギー範囲拡張のため、評価用コード（CCONE）の改良を継続し、複合粒子スペクトル計算方法を確立する。また、J-PARC に設置した中性子核反応測定装置（ANNRI）を用いた捕獲断面積測定技術を開発するために、飛行時間及びガンマ線エネルギーの 2 次元データ解析手法を開発する。なお、ANNRI の被災により、2 次元データ取得を取りやめる。FCA の被災により、MA 核種等の反応率測定装置の整備が不可能になったため、炉物理実験データベースの拡充に向けた U-235 捕獲断面積の精度向上に資する臨界実験の解析を実施する。核設計コードに対してα線解析機能を実装する。また、熱流動に起因して発生する構造体内熱応力を評価するため、構造体非定常温度分布の予測結果を基に熱応力分布を予測する機能を開発する。

中性子を利用した熱流動計測技術に関して、3 次元 CT データの空間分解能の向上手法を開発する。JRR-3 の被災により、データの取得が不可能になったため、その向上手法の効果に関する評価は取りやめる。
2) 照射材料科学研究

軽水炉材料の応力腐食割れ挙動や高速炉材料等の高照射量領域での力学的特性変化の評価のため、過酸化水素注入下の亀裂進展データを取得し、粒界近傍の変形に及ぼす照射欠陥の影響を評価するとともに、カスケード損傷を考慮した微細組織変化モデルを構築する。原子力科学研究所の実験装置の被災により、再処理機器用ステンレス鋼の腐食特性解明のための不純物の局所存在形態の特定が不可能となったため、不純物の局所分布データを取得し、腐食特性への影響を予測する。

3) アクチノイド・放射化学研究

MA含有燃料技術の基盤を形成するため、Cm含有酸化物の熱物性データを取得する。湿式分離プロセスに関するデータベース拡充として、加熱硝酸溶液中のアクチノイドの原子価変化の硝酸濃度依存性を定量的に評価する。難分析長寿命核種のSe-79、Cs-135、Tc-99及びSn-126の分離・分析法を実高レベル廃液試料に適用し、有効性を検証する。エマルションフラーフ法を基盤とした有価物回収のための新技術を検討する。

単一粒子に含まれるPuとAmの比を測定し、Puの精製時期推定法を開発する。

4) 環境科学研究

大気・陸域・海洋での包括的物質動態予測モデル・システムについては、抽出した青森地区に関する改良点に基づき、同地区への適用性向上のための改良・高度化を行い、現地データを使用して妥当性検証を行う。また、加速器質量分析装置を使用した上記モデル・システムの検証データ取得のため、C-14の観測・実験手法を青森地区に適用し、その地域特性を考慮した手法の改良を行う。

5) 放射線防護研究

原子炉内での中性子増倍計算に対応するため、粒子・重イオン輸送計算コードPHITSとモンテカルロ計算コードMVP統合の詳細設計を行う。ICRP2007年勧告の線量評価モデルに基づき、内部被ばく評価に用いる中性子の
比吸収割合を計算する。DNA 損傷・修復を指標とした放射線応答モデルを試作する。
高エネルギー中性子校正場中に混在する数 MeV 以上の目的外中性子スペクトルを測定・評価する。単色中性子校正場中に混在する光子と中性子との弁別が可能な測定手法を開発する。

6) 計算科学技術研究
原子力施設全体において新基準地震動を用いた挙動解析を可能とするため、平成 22 年度（2010 年度）に開発した弾塑性解析機能の高度化に向けた機構内施設の事例解析と機能評価を行う。また、三次元仮想振動台から出力されるテラバイト規模の膨大なデータから、耐震性評価において重要となる領域を瞬時に特定可能な大規模データ可視化解析技術を開発する。
原子炉構造材料に対しては、照射によって生じるヘリウム及び空孔の粒界脆化効果を計算可能とするシミュレーション技術を開発する。アクチノイド化合物については、二酸化プルトニウムの第一原理計算結果を基に熱物性値を求める技術を開発する。機能材料については、絶縁体材料表面での熱電特性を計算するシミュレーション技術を開発する。

7) 分離変換技術の研究開発
分離変換技術を導入した核燃料サイクルの性能評価に資するため、燃料サイクル中の各プロセスにおける重金属インベントリを評価する。
MA 分離及び Sr-Cs 分離のプロセスフローシート構築のため、連続分離試験等により元素の分離挙動基礎データを取得する。放射線触媒反応を利用した有用元素回収技術における反応機構検証データを取得する。加速器駆動システム（ADS）の成立性確認に資するために、鉛ピリウム流動ループ中での酸素濃度測定、J-PARC リニアックの運転データに基づくビームトリップ頻度の評価及び ADS 用窒化物燃料の乾式再処理工序における物質収支評価を行う。臨界実験装置検討では、必要最小限の MA 装荷量を基に、多様な核変換システムを模擬可能な MA 装荷概念を得る。
(4) 先端原子力科学研究

先端材料の基礎科学分野では、理論及び実験によるスピンエレクトロニックス材料の研究を行い、スピン流生成等に関する知見の獲得をめざす。重元素領域における原子核科学と物性科学では、重原子核の核物理的・化学的特性の解明をめざし、また、アクチノイド化合物の多用な特性に関する研究を継続する。放射場と物質の相互作用に関する基礎科学の分野では、放射線が生体分子に及ぼす影響・微生物が放射性物質に及ぼす作用の解明を目指す。開発した放射線検出器の調整を行い、J-PARC を利用した新奇ハイパー核の探索実験を開始できるようにする。また、68Ge-68Ga 線源の高強度化を図り、偏極電子ビームを開発する。国際公募に基づく黎明研究制度を引き続き実施し、斬新な研究のアイデアを発掘し、先端原子力科学研究への展開を図る。

4. 原子力の研究、開発及び利用の安全の確保と核不拡散に関する政策に貢献するための活動

(1) 安全研究とその成果の活用による原子力安全規制行政に対する技術的支援

軽水炉の長期供用、新技術の導入による軽水炉利用の高度化（燃料の高燃焼度化、最適運転サイクル、出力増強など）、核燃料サイクル施設の本格操業、各段階において発生する放射性廃棄物の処分実施などに際して、十分な安全が確保されることを確認及び立証するための研究を進め、その成果を活用して原子力安全規制行政への支援を行う。「原子力の重点安全研究計画」等に沿った研究を進め、最新の知見の取得及び提供を通じて指針・基準類の整備及び体系化に貢献するなど、安全規制の科学的合理性及び説明性の向上に資する。

1) リスク評価・管理技術に関する研究

重要度評価指標の適用研究を進めるとともに、リスクを考慮した意思決定支援技術に必要な基礎データを整備する。また、核種移行挙動実証の成果を基に核燃料施設の事故影響評価手法を改良する。防災指針見直しに資するため、防護対策のための指標の検討を開始する。さらに、事故・故障及び関連情報の収集・分析を行う。
2) 軽水炉の高度利用に対応した新型燃料の安全性に関する研究

新型燃料の事故時挙動評価に向けて、被覆管機械特性試験等により反応度事故及び冷却材喪失事故時の高燃焼度燃料破損挙動に関するデータを取得する。なお、NSRR の被災により継続してきたパルス照射実験は不可能であるため中断する。ペレットからの FP ガス放出等に関する解析モデルの整備を進める。また、機械特性試験により反応度事故時の燃料破損機構について調べる。さらに、異常過渡時の試験を実施するための照射装置を材料試験炉 JMTR に整備する。JMTR による照射試験は被災により不可能であるため取りやめる。

3) 軽水炉の高度利用及び新型の軽水炉等に関する熱水力安全研究

システム効果実験を継続して最適評価手法の整備を進めるとともに、不確かさ評価手法の開発を継続する。なお、化工特研被災のため 3 次元二相流や炉心熱伝達に係る個別効果実験は不可能であるため中断する。また、3次元熱流動解析手法及び地震時の BWR 挙動を評価する熱水力最適評価手法の整備を継続する。さらに、シビアアクシデント解析コードの整備を行う。

4) 材料劣化・高経年化対策技術に関する研究

微小試験片による原子炉圧力容器鋼の破壊靭性評価法の整備を進めるとともに、照射試験の準備を行う。照射環境下での応力腐食割れ試験等に必要な技術開発及び設備の整備を進める。構造材料不連続部等に対する確率論的破壊力学解析に係る破壊力学解析手法の整備を進める。ふげん実機材等を使用して、2 相ステンレス鋼の熱時効脆化に関するデータを引き続き取得し、機構論的検討を行う。

5) 核燃料サイクル施設の安全評価に関する研究

再処理施設のリスク評価上重要な事象について、廃液沸騰時の放射性物質の放出移行率などの実験データの取得及び解析を行う。なお、化工特研被災のため継続してきたケーブル火災研究は不可能であるため中断する。
また、新型燃料導入に対応した臨界ベンチマークデータ取得実験の炉心体系の検討及び燃焼解析評価のため使用済燃料組成データの取得を行う。さらに、再処理施設機器材料の腐食進展傾向評価モデルを作成する。

6）放射性廃棄物に関する安全評価研究

時間スケールや処分環境を考慮した安全評価シナリオの設定手法及び廃棄体・人工バリア材の変遷モデルを整備する。人工バリアや天然バリアを介した放射性物質の移行挙動に係る評価データ設定の考え方について検討する。また、自然事象等の外的因子の影響を考慮した地下水流動評価手法を整備する。さらに、多様な原子力施設の廃止措置段階に応じた決定論的な被ばく線量評価のための基幹コードを開発する。

7）関係行政機関等への協力

基準・指針類の策定や体系化に関し、最新の知見を提供するとともに、関係行政機関等における審議に直接的な人的支援を行う。また、原子力施設等の事故・故障原因究明調査等に関しても、具体的な要請に応じた人的・技術的支援を行う。さらに、学協会における民間規格の整備や技術戦略マップ（ロードマップ）の策定等に貢献する。

(2) 原子力防災等に対する技術的支援

原子力災害時等に、災害対策基本法等で求められる指定公共機関としての役割である人的・技術的支援を確実に果す。専門家の活動拠点である原子力緊急時支援・研修センターを維持・運営し、オフサイトセンター等で行われる住民防護のための防災対応を支援する。

また、機構内専門家の人材育成として研修及び支援活動訓練を企画実施するとともに、国及び地方公共団体の防災対応要員、消防等の防災関係者等を対象とした防災研修・演習を行う。

さらに、安全・安心の視点に立った平時における活動として、一般の方々の原子力防災に係る知識向上に向け、防災活動の拠点施設の積極的な公開などを行う。

各地で実施される原子力防災訓練等に積極的に参加するとともに、訓練を
通した課題抽出結果等を踏まえ、原子力の専門家の立場から我国の防災対応基盤強化及び地域住民の安全確保に繋がる提言を行う。

我が国の原子力災害対応の仕組みへの反映、また、機構が行う技術的支援活動能力強化に資するため、諸外国及び国際機関で実施される原子力緊急時訓練、原子力防災研究の動向等について調査・研究し、対外的な情報発信を行う。具体的には、早期対応力の強化に関する検討並びに武力攻撃事態及び緊急対処事態に伴って生ずる放射性物質又は放射線による被害への対応に関する検討を行う。

国際的な原子力緊急時支援のため、IAEA 事故・緊急時センター（IEC）との連携強化を進めるとともに、IAEA のアジア原子力安全ネットワーク（ANSN）の原子力防災に係る活動を通じてアジアメンバー国に対し、我が国の原子力防災に係る経験等を提供する。さらに、韓国原子力研究所との研究協力取決めに基づく、情報交換を実施する。

(3) 核不拡散政策に関する支援活動

1) 核不拡散政策研究

過去、米国の政策が日本の核燃料サイクル計画に与えてきた影響の整理を行うとともに、現協定の改定に向けた論点の検討を実施する。

核不拡散確保の観点から二国間原子力協力協定に共通的に盛り込まれるべき要素を検討する。

核不拡散の国際動向に関する情報を収集及び整理し、関係行政機関に情報提供を実施する。

2) 技術開発

機構内の関連組織が連携し、核物質の測定及び検知に関する技術開発等を行う。

次世代核燃料サイクル等が具備すべき核拡散抵抗性につき、核拡散抵抗性評価手法の技術開発を実施する。第 4 世代原子カシステム国際フォーラム（GIF）核拡散抵抗性・核物質防護作業部会（PRPP WG）の活動に継続して参加する。
JAEA-DOE間の年次技術調整会合（PCG会合）を開催し、各協力内容のレビューの実施及び新規案件等による研究協力の拡充する。その他海外機関との協力を実施する。

東京大学グローバルセンターオブエクセレンス（GCOE）と核不拡散技術共同研究を進める。

核物質防護（PP）強化に向けて、DOEとの共同研究において、2次元及び3次元ビデオ監視システムの有効性試験についての最終報告書を作成する。

DOE及び関係国立研究所と共同で新たな核監視技術開発を進める。

3) CTBT・非核化支援

CTBT国際監視制度施設を運用するとともに、核実験監視解析プログラムに関して、国内データセンター（NDC）暫定運用体制の中で得られる知見のフィードバックや観測所データ量増加への対応が可能となるよう改良や高度化を実施する。

ロシア解体核プルトニウム処分を推進するため、日米露間で協議を行う。

4) 理解増進・国際貢献

核不拡散分野の国際協力や情報発信を促進するため、メールマガジン（核不拡散ニュース）等による機構外への情報発信を継続するとともに、国際的なフォーラムを開催し、その結果をウェブサイト等で発信する。

アジア等の原子力新興国を対象に核不拡散・核セキュリティに係る人材育成（教育、訓練）を行うことにより、これらの国々のキャパシティビルディング機能の強化を支援し、また、これらの国々に必要な基盤整備等に関する支援を実施する。

事業実施に当たっては国内関係機関との連携を密にし、また、機構内の体制や施設の整備を行う。本事業には国際的な協力も不可欠であるため、IAEA等の国際機関や米国等との協力を積極的に行進する。

「IAEAとの核セキュリティに係る調整研究プロジェクト（CRP）」に参画する。
5. 自らの原子力施設の廃止措置及び放射性廃棄物の処理処分に係る技術開発

（1）廃止措置技術開発

廃止措置エンジニアリングシステムについて、ふげんの復水器等の解体作業の計画立案にシステムの適用を継続するとともに、ふげんの実績データを収集し、タービン系機器等の撤去に係る評価モデルの作成を進める。

クリアランスレベル検認評価システムについては、JRR-3 改造時に発生したコンクリート、ふげんの金属解体物、DCA の金属解体物及び人形峠のウラン金属解体物のクリアランスの実務作業へ適用する。

ふげんにおける原子炉本体技術開発では、原子炉本体の切断工法を選定し、原子炉解体モックアップ計画の検討を進める。

プルトニウム燃料第二開発室の本格解体への適用を目指し、遠隔解体、二次廃棄物発生量低減化等に関する試験・評価を進める。

（2）放射性廃棄物処理処分・確認等技術開発

廃棄物管理システム開発について、原子力科学研究所を対象として開発した廃棄物のデータベースを大洗研究開発センターにおいて利用するためのシステムの拡張を進める。

放射能評価技術開発については、原研第 4 研究棟、キャピラリー電気泳動装置及びレーザー共鳴電離試験装置が被災したことにより、α 核種の電気泳動実験及び長半減期核種の共鳴電離実験は不可能であるため取りやめ、キャピラリー電気泳動及びレーザー共鳴電離質量分離法を応用した高線量廃棄物の簡易迅速分析法の開発を進める。

機構で発生した廃棄物の放射能評価方法の開発について、合理的な放射能評価法構築のために主要拠点の浅地中処分対象廃棄物の放射能分析データの収集・整理を行うとともに、これまでに取得した原子炉施設の放射能データを用いて、放射能評価方法の検討に着手する。

廃棄体化処理技術の開発については、焼却灰等のセメント固化における膨張現象等の課題解決に向けた試験を継続するとともに、放射線による固化体からのガス発生評価に係る試験を開始する。脱硝技術開発については、試験を実施している原研第 4 研究棟の排水設備が被災したため、高性能触媒の
開発は不可能となったため取りやめ、脱硝条件の最適化等の触媒コストを低減させるための技術開発を進める。

澱物等の処理プロセスの設定検討を行う。

整備した被ばく線量評価ツールを用いて、余裕深度処分の被ばく線量評価を行う。

TRU廃棄物の地層処分研究開発については、国の全体計画に従い、処分場に存在するセメント系材料や硝酸塩に起因する影響評価のためのモデルや解析コードを整備する。

6. 放射性廃棄物の埋設処分

(1) 概念設計の実施

平成22年度（2010年度）に実施した埋設施設の設備仕様、レイアウト等の概念設計について、安全性及び合理性の観点から精査を行う。また、概念設計により得られた結果を踏まえ、今後の基本設計に備えた調査・試験及び環境条件設定に向けた環境調査計画を策定する。

(2) 埋設処分業務の総費用、収支計画及び資金計画の策定

埋設施設に係る建設費、操業費、人件費及び一般管理費を精緻に見積り総費用に反映するとともに、埋設施設の建設や操業、閉鎖後管理等の工程を検討し、合理的な事業スケジュールを設定し、第一期事業の全期間にわたる収支計画及び資金計画を策定する。

(3) 立地環境条件に関する技術的検討

概念設計の精査により得られる埋設施設の設備仕様等に基づき、我が国において想定されうる種々の自然環境及び社会環境条件下における線量評価、費用試算等を行い、合理性の観点から埋設施設の安全性及び経済性に関する評価・検討を行う。

(4) 立地基準及び立地手順の策定

外部有識者からの意見を聴取するために設置した埋設施設設置に関する
技術専門委員会において、埋設施設の設置に関する基準等の技術的事項の審議・検討を進める。

この結果を受けながら、立地選定に当たり考慮すべき項目及びその重要性の程度や項目ごとの評価に用いる指標を定めた立地基準の具体化を進める。また、立地の検討対象とする地点を具体化するための手法及び立地基準に基づく評価の方法や手順を定めた立地手順の具体化を進める。

(5) 輸送、処理に関する計画

研究施設等廃棄物の集荷、輸送、処理等が全体として合理的かつ体系的に行われるよう、情報の共有や連携・協力を図ることが必要なため、平成22年度（2010年度）に実施した「研究施設等廃棄物の埋設事業に関する説明会」において説明した放射能評価を行うための方法や実施事例等についての評価事例を基に、埋設対象廃棄物の内容物、放射能インベントリ等の情報収集を図る。その際、発生者と意見交換を行い、課題を整理し、その対策等について国及び関係機関と検討を行う。

(6) 事業に関する情報の発信

ウェブサイト等を通じて埋設事業に関する積極的な情報発信を継続して行うとともに、埋設事業に関する理解を得る上でさらに必要となる広報素材の作成を進める。

また、埋設事業に関する質問・相談などに的確に対応する。

(7) 資金を管理するシステムの運用

資金管理システムの運用を適切に行うとともに、累積データの解析機能構築を行う。

(8) 処分単価及び受託契約

受託契約を実施するに当たり、必要となる事項、内容、条件等検討結果を踏まえ、具体的な制度化等について検討する。

処分単価は、収支計画及び資金計画を策定した後、必要となる事項、内容、条件等検討結果を踏まえ、速やかに設定する。
7. 産学官との連携の強化と社会からの要請に対応するための活動

(1) 研究開発成果の普及とその活用の促進

研究開発成果を取りまとめ、学術雑誌等の査読付論文として年間950編以上公開するとともに、研究開発成果報告書類を随時刊行する。また、その標題や要旨を和文・英文で編集した成果情報を機構ウェブサイトから積極的に発信し、機構が成し得た成果の活用促進を図る。

ウェブサイトから研究開発成果を発信するに当たっては、動画等も積極的に取り入れ、分かりやすさの工夫等の改良を図っていく。原子力研究開発機関として、大学公開講座等への講師派遣、20回以上の各種成果報告会等の開催により、対話による成果の普及に取り組む。

岐阜県瑞浪市及び北海道幌延町の深地層の研究施設並びに幌延深地層研究センターのPR施設の見学や、地層処分研究開発部門、東濃地科学センター及び幌延深地層研究センターのウェブサイトへの研究成果等の掲載を通じて、地層処分の安全性等に係る国民との相互理解の促進を図る。

研究開発部門及び研究拠点の担当者及び研究者・技術者に対して知的財産の管理に係る実務についての教育及び研修を年2回実施する。特許等出願に当たって特許相談や先行技術に関する情報提供等の支援を行うとともに、特許相談会を年10回行う。研究開発部門と成果利用促進会議を定期的に行い、主要な技術の特許ポートフォリオ分析を行い、当該技術の知財戦略を明確化する。

(2) 民間事業者の核燃料サイクル事業への支援

民間事業者からの要請に応じて、濃縮事業についてはカスケード試験、再処理事業については試験運転、MOX燃料加工事業については施設建設等、民間事業者の事業進展に対応した技術情報の提供、技術者の派遣による人的支援及び要員の受け入れによる養成訓練を行う。

高レベル廃液のガラス固化技術については、民間事業者からの要請を受け、モックアップ設備を用いた試験に協力し、また、ガラス固化体及び仮焼層の基礎物性調査を実施、評価する。
これらのほか、要請を受けて、機構が所有する試験施設等を活用した試験、トラブルシュート等の協力を行う。

(3) 施設・設備の供用の促進

機構の保有する施設・設備を、利用者から適正な根拠に基づく対価を得て広範な利用に供することを目的として年間で670件程度の利用課題の獲得を見込む。機構内の供用施設を対象とした利用課題の定期公募を年2回行う。利用課題の審査に当たっては、透明性・公平性を確保するため、外部の専門家等を含む施設利用協議会を開催し、利用課題の選定、利用時間の配分等を審議する。利用者に対しては、安全教育や利用者の求めに応じた運転支援などの役務提供等を行うなど、利用者支援体制の充実を図る。利用者に対しては、安全教育や利用者の求めに応じた運転支援等の役務提供等を行うなど、利用者支援体制の充実を図る。産業界の利用拡大を図るため、アウトリーチ活動を推進するとともに、外部の利用が可能な施設については、ウェブサイト上に設備の利用例を掲載し、アンケートを取り、利用ニーズが高い施設・設備を特定し、新規に供用施設とするよう検討を進める。

平成23年度（2011年度）にJMTRの再稼働を行うとともに、照射利用公開を継続しつつこれを踏まえて平成23年度（2011年度）以降の照射利用計画を策定する。さらに文部科学省の最先端研究基盤事业の補助対象事業に選定された最先端照射設備等の整備を進めるとともに、JMTRの維持管理を行う。

(4) 特定先端大型研究施設の共用の促進

「特定先端大型研究施設の共用の促進に関する法律」（平成6年法律第78号。以下「共用促進法」という。）で定められた中性子線共用施設の共用を年度後半より開始する。

4月に業務開始する登録施設利用促進機関が、公正な課題選定及び利用者への効率的支援を実施できるようにするために、協力を行う。

中性子線共用施設、中性子線専用施設等の混在する中性子実験環境の放射線安全及び一般安全を確保するため、一元的な管理運営を継続する。

(5) 原子力分野の人材育成

国内研修では、原子炉工学、放射線利用及び国家試験受験準備に関する研
修並びに法定資格取得のための法定講習及び職員向け研修（安全教育、原子力技術教育）を計画的に実施し、受講者に対するアンケート調査により年度平均で80%以上から「有効であった」との評価を得る。また、官公庁等、外部からのニーズに柔軟に対応して、随時研修を開催する。これらの研修事業の遂行により受講生1,000人以上を目指す。

大学連携ネットワーク協定締結大学に対し、遠隔教育システム等による大学相互間の講義や機関施設を活用した学生への教育実習を実施するとともに、東京大学大学院原子力専攻及び原子力国際専攻並びに連携協力協定の締結大学等、並びに文部科学省・経済産業省の原子力人材育成プログラムの採択校に対する客員教員、講師等の派遣及び学生の受入れを実施することにより、大学における人材の育成に貢献する。

アジア諸国等を対象とした国際研修事業を推進するとともに、国内外の関係機関等との協力関係を構築するなど、国際原子力人材育成の推進に貢献する。

国内の原子力人材育成関係機関及び機関内の関係部署との連携協力を進め、原子力人材育成情報の収集、分析及び発信を行う。

産官学の協同で平成22年度（2010年度）に設立された「原子力人材育成ネットワーク」の事務局として、その活動を積極的に進め、我が国の原子力人材育成推進に係る中核的役割を果たす。

(6) 原子力に関する情報の収集、分析及び提供

国内外の原子力科学技術に関する学術雑誌、専門図書、原子力レポート、規格等を収集・整理・提供し、研究開発を支援する。機構図書館に所蔵しない文献については外部の図書館等から入手し、利用者に提供する。所蔵資料の目録情報データベースを機構外に発信するとともに、機構外からの所蔵文献の複写要請に対応する。

国際原子力情報システム（INIS）計画の下、国内の原子力情報を収集・編集し、IAEAに送付する。また、INISデータベースの国内利用促進のため、研究者・技術者を集まる学会等の場でINIS説明会を年間4回以上実施する。

原子力の開発利用動向、エネルギー・環境問題に関する情報等の原子力研究開発及び利用戦略にかかわる情報について国内外の多様な情報源から適
時・的確に情報を収集し、分析して幅広い情報発信を行う。

(7) 産学官の連携による研究開発の推進
　産業界との連携に関しては、我が国の原子力研究開発の中核機関としての機能、成果の利用促進機能を発揮するため、原子力エネルギー基盤連携センターの下に設置した特別グループにおける研究開発活動を着実に遂行する。
　大学等との連携に関しては、先行基礎工学研究協力制度及び連携重点研究制度を通じ、大学等の知見を得て、大学等の機関の研究への参加や研究協力など多様な連携を推進する。
　産業界等との連携に関しては、共同研究、技術移転、技術協力等を効果的に行い、実用化が見込まれるものについては積極的に協力していく。
　効果的・効率的な研究開発を実施するため、共同研究等研究協力の研究課題の設定に外部ニーズを適切に反映していく。
　技術フェア・展示会等への出展により、機構が保有している特許や研究開発成果を公開するとともに、技術フェア・展示会等来場者への説明を通して機関の技術が広く活用できるものであることを周知し、実用化の促進を図っていくものとする。専門分野の技術相談については、機構内の専門家（当該技術者・研究者）への質問事項の照会を図り、共同研究、技術移転、技術協力等を効果的に行い、産業界のニーズに対して積極的に実用化に協力する。
　関係行政機関、民間事業者等の要請に応じて、機構の有する技術的ポテンシャル及び施設・設備を活用して、軽水炉技術の高度化等に協力する。

(8) 国際協力の推進
　各研究開発分野について二国間及び多国間の国際協力を推進する。米仏等との協力を進めるとともに、ITER、BA、第4世代原子力システム国際フォーラム（GIF）等の協力を推進する。
　また、各研究開発拠点について、国際拠点としての環境整備を継続する。
　IAEA、経済協力開発機構／原子力機関（OECD/NEA）等の国際機関への事務局、委員会及び専門家会議に専門家を派遣する。
　アジア原子力協力フォーラム（FNCA）その他の協力枠組みを活用して、アジア諸国及び開発途上国との国際協力を進め人材育成に貢献する。
（9）立地地域の産業界等との技術協力

福井県が進めるエネルギー研究開発拠点化計画への協力として、その「推進方針」に基づき、国際原子力人材育成センターの設置への協力、FBRプラント工学研究センターの整備、プラント技術産学共同開発センター（仮称）の整備、福井大学附属国際原子力工学研究所等への客員教授等の派遣、地元企業等との共同研究等を実施する。

幌延深地層研究センターでは、深地層の研究施設を活用し幌延地圏環境研究所や北海道大学等と研究協力や情報交換を行う。東濃地科学センターでは、深地層の研究施設を活用し東濃地震科学研究所や岐阜大学等と研究協力や情報交換を行い、地域へ協力する。

急激に増加しているJ-PARCの外国人利用者と地元との交流を図り、利用者の生活環境と研究環境の整備構築を継続する。

（10）社会や立地地域の信頼の確保に向けた取組

1) 情報公開・公表の徹底等

社会や立地地域からの信頼を確保するため、積極的な情報公開の推進、厳格な情報公開制度の運用に取り組む。また、常時から立地地域やマスメディアに対する成果等の発表、週報による情報提供、ウェブサイトでの情報発信に取り組む。さらに、マスメディアに対する勉強会及び施設見学会の実施並びに職員に対する発表技術向上のための研修を実施し、正確かつ分かりやすい情報発信に努める。なお、情報の取扱いに当たっては、核物質防護に関する情報、他の研究開発機関等の研究や発明の内容、ノウハウ、営利企業の営業上の秘密等について、機微技術情報等管理規程を厳格に適用していく。

2) 広聴・広報・対話活動の実施

社会や立地地域との共生を目指し、「草の根活動」を基本に広聴・広報・対話活動を行う。情報の一方的な発信にならぬよう、対話による相手の立場を踏まえた双方向コミュニケーションを基本とし、理数科教育支援となる
る活動に積極的に取り組む。具体的には、対話活動、モニター制度等による直接対話の50回以上実施、研究施設の一般公開、見学会の積極的な開催、機構のウェブサイトの工夫、広報誌・映像の作成等を実施する。また、サイエンスカフェの開催などアウトリーチ活動を推進する。さらに、理数科教育支援として、サイエンスキャンプの受入れ、出張授業、展示館などでの実験教室等を実施する。実施に当たっては、関係行政機関等との連携により、より効果的な活動の実施も目指す。

展示施設の運営については、展示施設アクションプランに基づき、利用率の向上及び効率的な運営を目指す。

II. 業務運営の効率化に関する目標を達成するためとるべき措置

1. 効率的、効果的マネジメント体制の確立

(1) 柔軟かつ効率的な組織運営

総合的で中核的原子力研究開発機関として、機構全体をふかんし戦略的な経営を推進し、事業の選択と集中、大胆かつ弾力的、効果的な経営資源の投入等を行うことができるよう、理事長によるPDCAサイクルをより効果的に回すことにより、事業の進捗管理並びに課題の把握及び対策を行う。

経営層による明確な目標設定、迅速な経営判断、経営リスクの管理等を行うことができるよう、経営企画機能を強化する。

研究開発部門及び研究開発拠点を軸とした研究開発体制のこれまでの運用実績を踏まえ、原子力施設の安全確保を第一に、効果的・合理的な業務運営を行うため、拠点長及び部門長に責任と権限を持たせ、組織内でのライン職とスタッフ職の役割の明確化を図る。組織間の有機的連携を確保しつつ、機構全体として相乗効果を発揮できるよう、各組織におけるPDCAサイクルを通じた業務運営体制の改善・充実を図る。

外部からの客観的・専門的かつ幅広い視点での助言・提言を受けるため、経営顧問会議及び研究開発顧問会を開催し、経営の健全性、効率性及び透明性の確保に努める。
（2）内部統制・ガバナンスの強化

内外の情勢変化やトラブル等による研究開発の遅延を防ぐため、経営層による研究開発拠点・研究開発部門への関与を強化するなど、リスク管理機能を強化する。監査機能、リスク管理、情報セキュリティなどの内部統制・ガバナンスの一層の機能強化に向けて、組織体制の整備を含む、横断的な仕組みの整備・体系化を行う。

役職員のコンプライアンスの徹底のため、コンプライアンス通信を月数回発行するとともに、コンプライアンス研修会を各拠点で開催し、啓発を図る。

機構役職員の再就職に関しては、平成22年（2010年）1月に制定した達「役職員の再就職あっせん等の禁止について」に基づき、適切な対応を図る。

（3）人材・知識マネジメントの強化

機構の研究開発に不可欠な人材及び保有する知識を適切に維持及び継承するための推進方策を検討し、実施する。各組織で必要とする人材及び保存・継承が必要な知識についての検討を行うなど、人材・知識マネジメントを研究開発の経営管理PDCAサイクルと一体的に実施する。

人材マネジメントについては、各研究開発部門等において、機構内他組織や国内外の他機関との人事交流、マネジメント研修等への参加や、経営管理・安全管理等の専門的な実務経験を積ませるなどのキャリアパスを念頭に、研究能力・技術開発能力の強化を目的とした人材の確保、育成及び活用に係る方針を策定し、人材マネジメントを推進する。

知識マネジメントについては、各研究開発部門等のニーズに応じて、研究成果、施設・設備管理等のデータや情報などを保存・集約し、機構の研究開発成果の技術移転や若手の研究者・技術者への継承・能力向上等に資する。

（4）研究組織間の連携による融合相乗効果の発揮

機構が保有する研究インフラを総合的に活用した研究開発の効率的実施や、実用化を目指したプロジェクト研究開発組織と基礎・基盤研究組織との円滑なニーズ・シーズの授受などのために、組織間の連携・融合を促進する研究制度の運用、研究インフラの有効活用を行うためのデータベースの充実
をはじめとする取組、さらに必要に応じて連携・融合を促進する組織体制の強化などを行う。

2. 業務の合理化・効率化

(1) 経費の合理化・効率化

独立行政法人会計基準に基づく一般管理費（公租公課を除く。）について、平成21年度（2009年度）に比べ概ね6%以上を削減する。その他の事業費（新規・拡充事業、外部資金で実施する事業、及び埋設業務勘定への繰入を除く。）についても効率化を進め、平成21年度（2009年度）に比べ概ね2%以上を削減する。また、新規・拡充事業及び外部資金で実施する事業についても効率化を図る。

幌延深地層研究計画にかかわる研究坑道の整備等については、前年度に契約締結した、平成31年（2019年）3月までの期間の民間活力導入によるPFI事業を実施する。

廃止予定の上斎原分室並びに宿舎へ転用する予定の権川分室及び下北分室については、それぞれ廃止又は宿舎への転用のための準備行為を行い、土岐分室については、宿舎への転用を完了する。青山分室については、廃止に向けた準備を進める。平成23年度（2011年）末をもって廃止する。

なお、東海分室と阿漕ヶ浦分室については、平成23年3月11日に発生した東日本大震災により阿漕ヶ浦分室が大きく損壊したため廃止し、東海分室に機能を集約し活用する。

(2) 人件費の合理化・効率化

「行政改革の重要方針」（平成17年12月24日閣議決定）及び「簡素で効率的な政府を実現するための行政改革の推進に関する法律」（平成18年法律第47号）において削減対象とされた人件費については、「経済財政運営と構造改革に関する基本方針2006」（平成18年7月7日閣議決定）に基づき、人件費改革の取組を平成23年度（2011年度）まで継続する。ただし、今後の人事院勧告を踏まえた給与改定費及び以下により雇用される任期制職員（以下「総人件費改革の取組の削減対象外となる任期制研究者等」という。）
の人件費については、削減対象から除く。

・競争的研究資金又は受託研究若しくは共同研究のための民間からの外部資金により雇用される任期制職員
・国からの委託費及び補助金により雇用される任期制研究者
・運営費交付金により雇用される任期付研究者のうち、国策上重要な研究課題（第三期科学技術基本計画（平成 18 年 3 月 28 日閣議決定）において指定されている戦略重点科学技術をいう。）に従事する者及び若手研究者（平成 17 年度（2005 年）末において 37 歳以下の研究者をいう。）

(3) 契約の適正化

① 一般競争入札等において、真に競争性及び透明性が確保されているか、厳正に点検・検証を行い、一般競争入札における一者応札の削減に取り組み、一者応札率 50%以下を達成する。さらに、契約監視委員会において外部有識者及び監事の視点による契約の妥当性の確認を受け、その結果をウェブサイトにて公表する。

② 経費節減の観点から、他の研究開発法人と協力してベストプラクティスを抽出し、実行に移す。

(4) 自己収入の確保

主な収入項目について、それぞれ定量的な目標を定め、自己収入の確保を図る。具体的には、平成 23 年度（2011 年度）は共同研究収入 1.1 億円、競争的研究資金 20 億円、施設利用料収入 5.81 億円、寄附金 1.29 億円、間接経費（科学研究費補助金）1.46 億円、受託収入（競争的資金制度以外の公募型研究費収入、受託業務収入）123 億円、研修授業料収入 0.52 億円を目標とする。

(5) 情報技術の活用等

スーパーコンピュータの安定運用と効率的利用を推進する。業務・システム
ム最適化の一環として、①ネットワーク最適化計画に基づき高信頼化及び情報セキュリティ対策強化を進める、②財務・契約系情報システムの最適化計画に基づき、新システムの本格運用を開始する、③情報システム共通基盤の運用を開始する。

環境基本方針、環境目標及び環境年度計画を策定し、環境配慮活動を推進する。また、業務効率化推進計画にのっとった経費節減並びに事務の効率化及び合理化の取組を継続する。

3. 評価による業務の効率的推進

機構で実施している研究開発の透明性を高めるとともに効率的に進める観点から、研究開発課題の外部評価計画に基づき評価を行う。

評価結果は、インターネット等を通じて公表するとともに、研究開発の今後の計画に反映する。

III. 予算（人件費の見積もりを含む。）、収支計画及び資金計画

1. 予算

平成23年度予算
[注1] 各欄積算と合計欄の数字は四捨五入の関係で一致しないことがある。
[注2] 受託等経費には国からの受託経費を含む。
[注3] 1. 「廃棄物処理処分負担金」の用途の種類は、電気事業者の再処理役務契約（昭和52年契約から平成6年契約）に係る低レベル廃棄物の処理、保管管理、輸送、処分に関する業務に限る。
2. 今年度における使用計画は以下のとおりとする。
使用予定額：全体業務総費用9,685百万円のうち、4,552百万円
①廃棄物処理費：
使用予定額：合計644百万円
②廃棄物保管管理費：
使用予定額：合計1,694百万円
③廃棄物処分費：
使用予定額：合計2,214百万円
1. 廃棄物処理処分負担金は次期中期目標期間に繰り越す。
[注4] 1. 一般勘定及び電源利用勘定の「その他の収入」には、独立行政法人日本原子力研究開発機構法（平成16年法律第155号。以下「機構法」という。）第17条第1項に基づく受託研究、共同研究等契約で発生した放射性廃棄物の処理、貯蔵及び処分のための費用が含まれる。
2. 当該費用のうち処理及び貯蔵のための費用の一部は、平成24年度（2012年度）以降に使用するため、次年度以降に繰り越す。
2. 収支計画

平成 23 年度収支計画

<table>
<thead>
<tr>
<th>区別</th>
<th>一般勘定</th>
<th>電源利用勘定</th>
<th>埋設処分業務勘定</th>
</tr>
</thead>
<tbody>
<tr>
<td>費用の部</td>
<td>73,398</td>
<td>94,703</td>
<td>642</td>
</tr>
<tr>
<td>経常費用</td>
<td>73,398</td>
<td>94,703</td>
<td>642</td>
</tr>
<tr>
<td>事業費</td>
<td>64,406</td>
<td>87,798</td>
<td>614</td>
</tr>
<tr>
<td>うち、埋設処分業務勘定へ繰入れ</td>
<td>1,379</td>
<td>3,237</td>
<td>28</td>
</tr>
<tr>
<td>一般管理費</td>
<td>1,833</td>
<td>2,155</td>
<td></td>
</tr>
<tr>
<td>受託等支出</td>
<td>1,240</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>減価償却費</td>
<td>5,819</td>
<td>4,027</td>
<td></td>
</tr>
<tr>
<td>財務費用</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>臨時損失</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>区別</th>
<th>一般勘定</th>
<th>電源利用勘定</th>
<th>埋設処分業務勘定</th>
</tr>
</thead>
<tbody>
<tr>
<td>収益の部</td>
<td>73,398</td>
<td>94,703</td>
<td>4,878</td>
</tr>
<tr>
<td>運営費交付金収益</td>
<td>53,025</td>
<td>84,450</td>
<td>4,588</td>
</tr>
<tr>
<td>負担金負担金</td>
<td>12,402</td>
<td>723</td>
<td>4</td>
</tr>
<tr>
<td>受託等収入</td>
<td>1,240</td>
<td>723</td>
<td>250</td>
</tr>
<tr>
<td>その他の収入</td>
<td>913</td>
<td>950</td>
<td>28</td>
</tr>
<tr>
<td>財資見返負債見入</td>
<td>5,819</td>
<td>4,027</td>
<td>0</td>
</tr>
<tr>
<td>臨時損失</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>区別</th>
<th>一般勘定</th>
<th>電源利用勘定</th>
<th>埋設処分業務勘定</th>
</tr>
</thead>
<tbody>
<tr>
<td>収益の部</td>
<td>73,398</td>
<td>94,703</td>
<td>4,878</td>
</tr>
<tr>
<td>運営費交付金収益</td>
<td>53,025</td>
<td>84,450</td>
<td>4,588</td>
</tr>
<tr>
<td>負担金負担金</td>
<td>12,402</td>
<td>723</td>
<td>4</td>
</tr>
<tr>
<td>受託等収入</td>
<td>1,240</td>
<td>723</td>
<td>250</td>
</tr>
<tr>
<td>その他の収入</td>
<td>913</td>
<td>950</td>
<td>28</td>
</tr>
<tr>
<td>財資見返負債見入</td>
<td>5,819</td>
<td>4,027</td>
<td>0</td>
</tr>
<tr>
<td>臨時損失</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[注１] 各欄積算と合計欄の数字は四捨五入の関係で一致しないことがある。

[注２]
・「廃棄物処理処分負担金」の使途の種類は、電気事業者との再処理役務契約（昭和 52 年契約から平成 6 年契約）に係る低レベル廃棄物の処理、保管管理、輸送、処分に関する業務に限る。
・今年度における使用計画は、以下のとおりとする。
使用予定額：全体業務総費用 9,685 百万円のうち、4,552 百万円
① 廃棄物処理費:
使用予定額：合計 644 百万円
② 廃棄物保管管理費:
使用予定額：合計 1,694 百万円
③ 廃棄物処分費:
使用予定額：合計 2,214 百万円
・廃棄物処理処分負担金は次期中期目標期間に繰り越す。

[注３]
・一般勘定及び電源利用勘定の「その他の収入」には、機構法第 17 条第 1 項に基づく受託研究、共同研究等契約で発生した放射性廃棄物の処理、貯蔵及び処分のための費用が含まれる。
・当該費用のうち処理及び貯蔵のための費用の一部は、平成 24 年度（2012
3. 資金計画

平成 23 年度資金計画

<table>
<thead>
<tr>
<th>区別</th>
<th>一般勘定</th>
<th>電源利用勘定</th>
<th>埋設処分業務勘定</th>
</tr>
</thead>
<tbody>
<tr>
<td>資金支出</td>
<td>97,221</td>
<td>131,203</td>
<td>4,873</td>
</tr>
<tr>
<td>業務活動による支出</td>
<td>67,579</td>
<td>90,676</td>
<td>614</td>
</tr>
<tr>
<td>投資活動による支出</td>
<td>1,379</td>
<td>3,237</td>
<td>4,256</td>
</tr>
<tr>
<td>財務活動による支出</td>
<td>29,264</td>
<td>16,954</td>
<td>0</td>
</tr>
<tr>
<td>資金収入</td>
<td>97,221</td>
<td>131,203</td>
<td>4,873</td>
</tr>
<tr>
<td>業務活動による収入</td>
<td>79,626</td>
<td>109,824</td>
<td>4,873</td>
</tr>
<tr>
<td>運営費支払金による収入</td>
<td>59,170</td>
<td>98,731</td>
<td>4,616</td>
</tr>
<tr>
<td>補助金収入</td>
<td>18,295</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>受託等収入</td>
<td>1,240</td>
<td>723</td>
<td>0</td>
</tr>
<tr>
<td>その他の収入</td>
<td>921</td>
<td>970</td>
<td>0</td>
</tr>
<tr>
<td>投資活動による収入</td>
<td>17,511</td>
<td>9,400</td>
<td>0</td>
</tr>
<tr>
<td>施設整備費による収入</td>
<td>17,511</td>
<td>2,673</td>
<td>0</td>
</tr>
<tr>
<td>財務活動による収入</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>次年度への繰越金</td>
<td>85</td>
<td>18,705</td>
<td>0</td>
</tr>
</tbody>
</table>

【注１】 各欄積算と合計欄の数字は四捨五入の関係で一致しないことがある。

【注２】

・「廃棄物処理処分負担金」の使途の種類は、電気事業者との再処理役務契約（昭和 52 年契約から平成 6 年契約）に係る低レベル廃棄物の処理、保管管理、輸送、処分に関する業務に限る。

・ 今年度における使用計画は、以下のとおりとする。

使用予定額：全体業務総費用 9,685 百万円のうち、4,552 百万円

① 廃棄物処理費：

使用予定額： 合計 644 百万円

② 廃棄物保管管理費：

使用予定額： 合計 1,694 百万円

③ 廃棄物処分費：

使用予定額： 合計 2,214 百万円

・ 廃棄物処理処分負担金は次期中期目標期間に繰り越す。

【注３】

・ 一般勘定及び電源利用勘定の「その他の収入」には、機構法第 17 条第 1 項に基づく受託研究、共同研究等契約で発生した放射性廃棄物の処理、貯蔵及び処分のための費用が含まれる。
当該費用のうち処理及び貯蔵のための費用の一部は、平成24年度（2012年度）以降に使用するため、次年度以降に繰り越す。

IV. 短期借入金の限度額

短期借入金の限度額は、350億円とする。短期借入金が想定される事態としては、運営費交付金の受入れに遅延等が生じた場合である。

V. 重要な財産を譲渡し、又は担保に供しようとするとときはその計画なし

VI. 剰余金の使途

機構の決算において剰余金が発生したときは、

・ 以下の重点研究開発業務への充当

① 高速増殖原型炉「もんじゅ」における研究開発
② 核融合研究開発

・ 研究開発業務の推進の中で追加的に必要となる設備等の調達の使途に充てる。

VII. その他の業務運営に関する事項

1. 安全確保及び核物質等の適切な管理の徹底に関する事項

(1) 安全確保

原子力事業者として、安全確保を業務運営の最優先事項とすることを基本理念とし、自ら保有する原子力施設が潜在的に危険な物質を取り扱うとの認識に立ち、安全管理に関する基本事項を定めるとともに、自主保安活動を積極的に推進し、施設及び事業にかかわる原子力安全確保を徹底する。また、安全に係る法令等の遵守や安全文化の醸成を図る。

原子力安全に関する品質目標の策定、目標に基づく業務の遂行及び監査の実施により、保安規定に導入した品質マネジメントシステムを確実に運用するとともに、継続的な改善を図る。

42
原子力施設における安全管理、品質保証及び危機管理に関する教育・訓練計画を定め、必要な教育・訓練を確実に実施し、協力会社員等を含め、安全技能の向上を図る。

労働災害の防止、労働安全衛生等の一般安全の確保へ向け、協力会社員等も含めて、リスクアセスメントやTBM等の安全活動を推進する。

原子力災害時に適切に対応するため、必要な人材の教育・訓練を実施する。地域防災計画に基づく防災会議等へ委員を派遣し、地域とのネットワークによる情報交換、研究協力、人的交流等を行い、平常時から緊急時体制の充実を図る。また、地方公共団体等が行う原子力防災訓練及び講習会等に協力するとともに必要な指導を行う。

緊急時対応システムの維持管理計画を作成し、確実な運用を継続するとともに必要に応じた改善を行う。

(2) 核物質等の適切な管理

計量管理報告取りまとめ業務及び保障措置業務を適切に行う。また、機構計量管理業務に係る業務水準・業務品質の維持・向上を図る。

統合保障措置の適切な運用を図る。

核物質の管理に係る原子力委員会、国会等からの情報提供要請に対応する。

許認可対応業務及び当該輸送に係る業務を適切に行う。

使用済燃料運搬船「開栄丸」の利用に関して、関係機関と協議を行う。

試験研究炉用燃料の調達及び使用済燃料対米返還輸送に関し、米国DOEとの調整を行う。

核物質防護強化措置の維持・改善等を行う。

米国サンディア国立研究所（SNL）との共同研究として、警備員配置の最適化等に係る検討を行う。

国の要請による核物質防護・核セキュリティに係る支援を継続する。
2. 施設及び設備に関する計画

【高速増殖原型炉「もんじゅ」の研究開発に関連する施設・設備の整備】
送電線基幹系統安定化装置の設置については、各種試験を行う。
モニタリングポストの更新については、製作及び据付を行う。
プラント制御系設備計装盤の更新については、設計及び製作を行う。
ナトリウム工学研究施設（旧プラント実環境研究施設（仮称））の整備については、建屋の建設を着工するとともに、設備の設計・製作を進める。
格納容器空調用冷媒配管バイパス系設置については、設計及び製作を開始する。

【幌延深層研究センター掘削土（ズリ）置場の整備】
幌延深層研究センターにおける掘削土（ズリ）置場については、本中期目標期間に整備予定の47,000m³のうち残り27,000m³分を整備し、完了する。

【BA関連施設の整備】
国際核融合エネルギー研究センター事業で設置する計算機の運転に不可欠な周辺設備（冷却設備及び電源設備）の製作を完了するとともに、国際核融合材料照射施設に関する工学実証及び工学設計活動で設置する加速器設備の運転に不可欠な周辺設備（冷却設備及び電源設備）の製作を継続する。サテライト・トカマク計画としてJT-60SAの日本分担機器である超伝導コイル、真空容器及びダイバータの製作を継続する。クライオスタッド材料調達や真空容器支持脚及びポート部、遠隔保守機器等の製作に係る契約を締結する。また、JT-60SAで再使用する中性粒子ビーム加熱装置や高周波加熱装置の改修を継続するとともに、電源設備及び計測装置等の改修を開始する。

【J-PARCリニアックビーム増強・中性子利用実験装置の整備】
リニアックビーム増強は、次年度に最先端研究基盤事業と並行して行われる設置調整が効率的に行えるよう、手順を精査して工程を作成するとともに、加速空洞の製作を進め、ビーム診断機器や冷却装置などの周辺機器の製作を完了させる。
中性子利用実験装置は、被災により遅延が生じたが、年度後半からの「共用促進法」に基づく共用開始に向け、ナノ構造解析装置、ダイナミクス解析装置、階層構造解析装置及び物質構造解析装置の調整を完了させる。物質構造解析装置は震災により、調整以上の運用が不可能であるため、前述 3 装置に、4 次元空間中性子探査装置を加えた 4 台の共用ビームラインにより共用を開始する。また、中性子ターゲット損傷を軽減するための気泡注入系の高度化と分割型容器の開発に着手する。さらに、高性能スーパーミラーを応用した中性子輸送・集光システムの特性評価を実施する。

【液体廃棄物処理関連装置の製作等、高経年化対策】
液体廃棄物処理関連施設については、高経年化対策（セメント固化設備更新等）を完了する。

【固体廃棄物減容処理施設の整備】
固体廃棄物減容処理施設（OWTF）の建設については、建設工事を継続する。

【東日本大震災対応】
東日本大震災により被害を受けた機構が有する施設等について、放射性物質等の閉じこめ機能回復及び安全対策のための復旧を実施するとともに、特定先端大型研究施設である J-PARC の施設・設備や、ITER 関連機器を復旧する。

3. 放射性廃棄物の処理及び処分並びに原子力施設の廃止措置に関する計画
外部有識者の意見を聴取するなど客観性を確保しつつ、バックエンド対策を含めた機構事業全体を見直す等の経営的な視点を踏まえ、安全を前提とした合理的・効率的な中長期計画を策定する。
放射性廃棄物の処理・処分及び原子力施設の廃止措置を機構全体として計画的かつ合理的に進める。
（1）放射性廃棄物の処理処分に関する計画

1）低レベル放射性廃棄物については、契約によって外部事業者から受け入れるものの処理も含め、安全を確保しつつ、各研究開発拠点の既存施設において処理及び保管を継続して行う。また、処理に向けて以下のような取組を行う。

高減容処理施設については、廃棄物の減容及び廃棄体化に向けた処理として、大型廃棄物の解体分別を含めた前処理及び高圧圧縮装置のホット運転を継続する。また、埋設処分に向け、廃棄体性能及び放射能濃度に係る廃棄体確認データの整備を進める。

低放射性廃棄物処理技術開発施設（LWTF）のセメント固化設備については、安全審査の対応を進める。LWTFの被災により、セメント固化設備の施工設計を取りやめ、LWTFの一部を復旧する。また、硝酸根分解に係る工学試験を行い設備設計に必要なデータを取得する。

固体廃棄物減容処理施設（OWTF）の建設を継続するとともに、焼却溶融炉に係る煙道閉塞対策の検討を開始する。

東海固体廃棄物処理体化施設（TWTF）焼却設備の基本設計を実施する。

水蒸気改質処理法による難処理廃棄物処理技術開発を継続する。

ふげん廃棄体化処理設備については、設計のための詳細検討を継続する。

2）高レベル放射性廃棄物の管理については、ガラス固化体の貯蔵が円滑にできるように関係機関との調整等を継続する。

3）低レベル放射性廃棄物の処分については、余裕深度処分の合理的な処分方策について検討を継続する。また、地層処分の合理的な実現に向け、関係者と連携・調整し検討を継続する。

（2）原子力施設の廃止措置に関する計画

以下の各施設について、廃止を含む整理・合理化のために必要な措置を実施する。
① 廃止措置を継続する施設

- 研究炉 2 (JRR-2)：維持管理を行う。
- 再処理特別研究棟：廃液タンク室に設置されている LV-7 を撤去する。
 また、同施設内に設置されている LV-1 の廃液処理に用いた設備を撤去する。
- ホットラボ施設 (照射後試験施設)：被災により原則立入禁止となったため、ウランマグノックス用鉛セル本体の解体を取りやめ、建家の復旧と施設の維持管理を行う。
- 東海地区ウラン濃縮施設：G 棟 (H 棟を含む。) の廃止措置を継続する。
- 重水臨界実験装置 (DCA)：廃止措置の第 3 段階 (原子炉本体等の解体撤去) として制御室内機器の解体撤去を行う。
- 新型転換炉「ふげん」：タービン施設の解体を継続するとともに、解体撤去物のクリアランスに係る測定及び評価方法の認可に関する審査対応等を進める。
- 濃縮工学施設：パイロットプラント遠心機の処理を行い、処理能力の確認を継続するとともに、クリアランスへの対応を図る。
- ウラン濃縮原型プラント：第一運転単位の滞留ウラン回収は加工事業許可変更の許可並びに設計及び工事が認可され、工事が終了後、滞留ウラン回収に着手する。
- 製錬転換施設：廃止措置（設備の解体・撤去）を継続する。
- 捨石たい積場：捨石たい積場の経過管理を行う。
- 夜次鉱さいたい積場：措置工事を進めるとともに、設計、調査等を継続する。
- 原子力第 1 船原子炉施設：残存する原子炉施設の維持管理を行うとともに、大型廃棄体化処理・処分のための合理的で経済的な解体工法を検討するに当たり、有害物対策の検討を進める。

② 中期目標期間中に廃止措置に着手する施設

- 液体処理場：廃棄物処理施設の被災により、撤去すべき大型機器の撤出ができないため、機器撤去を取りやめ、維持管理を行う。
- ウラン濃縮研究棟：維持管理を継続するとともに、廃止措置に向けた
準備作業を進める。

・ プルトニウム燃料第二開発室: 運転・維持管理を行うとともに、廃止措置を継続する。
・ B棟: 運転・維持管理を行うとともに、廃止措置に向けた準備を進め
る。
・ ナトリウムループ施設: 機器配管等の洗浄装置の検討を行う。また、
施設の解体に係る諸手続きのための作業を進める。
・ 東濃鉱山: 坑道措置や不要な機材類の撤去作業等を実施する。

③ 中期目標期間中に廃止措置を終了する施設

・ モックアップ試験室建家: 建家周辺の共同溝の撤去を継続する。
・ 保障措置技術開発試験室施設（SGL）: 被災により原則立入禁止となっ
たため、燃料の安定化処理を取りやめ、建家の復旧と施設の維持管理を
行う。
・ FP利用実験棟（RI 利用開発棟）: 被災により建家の使用禁止判定がな
され、撤去作業が不可能となったため、機器等の撤去を取りやめ、建
家の復旧作業を進める。廃止措置を平成 24 年度に完了する。

④ 中期目標期間終了以降に廃止措置に着手する施設（維持管理へ移行分）

・ 圧縮処理装置: 維持管理を行う。
・ 汚染除去場: 維持管理を行う。
・ A棟: 維持管理を行う。
・ 旧廃棄物処理建家: 維持管理を継続する。

⑤ 中期目標期間中に廃止措置の着手時期、事業計画の検討を継続する施設

・ 東海再処理施設: 運転・維持管理を行うとともに、事業計画の検討を
継続する。

原子力施設の廃止措置については、当該施設に係る外部利用者等のニーズを
確認した上で、廃止後の機構の研究開発機能の在り方、国内外における代
替機能の確保、機能の他機関への移管、当該施設の利用者の意見等を踏まえ
て、具体的な原子力施設の廃止時期及び廃止方法の検討を行うものとし、この具体的な方策の検討を進める。

4. 国際約束の誠実な履行に関する事項

機構の業務運営に当たっては、ITER計画、BA活動等、我が国が締結した原子力の研究、開発及び利用に関する条約その他の国際約束の誠実な履行に努める。

5. 人事に関する計画

（1）若手研究者等や卓越した研究者等の受入れにより研究開発環境の活性化を図る。

（2）研究開発等に係る大学、産業界等との連携や人事交流を促進し、幅広い視野を持つ人材の育成を図る。

（3）研究開発の進展や各組織における業務遂行状況等を適宜把握し、これらに応じて各組織間における横断的かつ弾力的な人材配置を図る。

（4）組織運営に必要な管理能力や判断能力、研究開発能力の向上を図るため、キャリアパスにも考慮した適材適所の人材配置や、職員に対するマネジメント研修の充実を図る。

（5）人事評価制度に基づき組織運営への貢献度等に応じた適切な評価と処遇への反映を図るとともに、制度の適切な運用を継続し、定期的に検証を実施する。

（参考1）

平成22年度（2010年度）における「行政改革の重要方針」及び「簡素で
効率的な政府を実現するための行政改革の推進に関する法律」において削減対象とされた人件費総額見込み（総人件費改革の取組の削減対象外となる任期付研究者等に係る人件費を除く。）

36,601 百万円

（参考 2）

（参考1）において削減対象とされた人件費と総人件費改革の取組の削減対象外となる任期付研究者等の人件費を合わせた人件費総額見込み（国からの委託費、補助金、競争的研究資金及び民間資金の獲得状況等により増減があり得る。）

37,688 百万円